![]() Главная страница Случайная лекция ![]() Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика ![]() Мы поможем в написании ваших работ! |
Лекция № 12 вектор БюргерсаВ настоящее время большое число работ посвящено исследованию структуры и свойств тонких магнитных, оптических и резистивных пленок, полученных путем осаждения на подложку. Структура этих пленок после отделения от подложек может быть непосредственно изучена с помощью ПЭМ. Однако, в тех случаях, когда образец для электронномикроскопического исследования готовят из макроскопической заготовки и целью исследования является изучение структуры макроскопического объекта, необходимо понимание того, насколько структура масси экспевного объекта соответствует структуре тонкой фольги, изучаемой с помощью ПЭМ. Структура может измениться из-за : а) перераспределения дислокаций вследствие релаксации дальнодействующих полей на пряжений при утонении; б) фазовых превращений при утонении. В металлах с низкой энергией дефектов упаковки общий характер дислокационной структуры при утонении мало меняется. Но при количественных оценках взаимодействия в дислокационных скоплениях следует учитывать возможное небольшое перераспределение дислокаций. В металлах с высокой энергией дефектов упаковки, если не принять мер для закрепления дислокаций (например декорированием примесями) происходит существенное изменение дислокационной структуры, и значительная часть дислокаций теряется (например в случае Al). В неметаллических материалах, в частности, полупроводниковых кристаллах, подвижность дислокаций существенно ниже, и, очевидно, при утонении заметного перераспределения дислокаций нет. При обсуждении влияния утонения на фазовые превращения следует учитывать два обстоятельства: во-первых, влияние нагрева фольги при утонении, во–вторых влияние поверхности на фазовые превращения. Наконец, при самом просмотре фольги в ПЭМ необходимо учитывать влияние на структуру облучения электронами. Косвенное влияние обусловленно некоторым нагревом, особенно если образец «толстый» или имеет утолщения в местах включений другой фазы Прямым воздействием электронов на структуру металлов можно, повидимому, пренебречь. Однако в диэлектриках LiF,PbI2, AgCl …облучение электронамивызывает образование и коагуляцию точечных дефектов. Если учесть выше приведенные изменения, исследования структуры тонких фольг позволяет получить представления и о структуре массивных объектов. Лекция № 12 вектор Бюргерса Из обсуждения контраста, вызванного полями смещений дислокаций, видно, что в принципе вектор Бюргерса определяется путем нахождения двух рефлексов (темнопольные изображения), в которых дислокация не дает контраста , т.е. для которых (Hb)=0. Линия пересечения соответствующих атомных плоскостей параллельна вектору Бюргерса. Однако, это обычно хорошо выполняется только для винтовой дислокации, так как в общем случае благодаря компоненте смещений u3 изображение дислокации может и не исчезать полностью при (Hb)=0. Поэтому для однозначного определения направления вектора Бюргерса необходима проверка выполнения и условия (Hb)=0 и условия (Hu3)=0. Методика конкретного эксперимента может видоизменяться в зависимости от ориентации смещений u2 и u3 по отношению к плоскости фольги, так как возможные повороты фольги относительно электронного пучка ограничены возможностями гониометрического устройства микроскопов. Рассмотрим определение вектора Бюргерса полной дислокации в гранецентрированной кубической решетке.Примем, что плоскость фольги совпадает с плоскостью (111). Пусть дислокация, лежащая плоскости фольги, имеет один из векторов Бюргерса параллельных плоскости (111): (а/2)[ Рассмотрим теперь дислокации, имеющие один из векторов Бюргерса, не лежащих в плоскости (111): При определении векторов Бюргерса частичных дислокаций в ГЦК решетке удобно исследовать фольгу, вырезанную по плоскости (110), используя отражения Векторы Бюргерса дислокаций Шокли можно найти из анализа контраста в этих четырех отражениях, учитывая, что при не слишком больших значениях s дислокации видны, если (Hb)= Анализ контраста на изображениях дислокаций позволяет определить знак вектора Бюргерса, то есть решить, находится ли дополнительная полуплоскость краевой дислокации выше или ниже плоскости скольжения. Эта задача тесно связана с задачей об определении природы дислокационных петель, возникающих в кристаллах при ассоциации точечных дефектов. На рис.17 схематически изображены две краевые дислокации противоположного знака и показан наклон атомных плоскостей, вызванный их полями смещений. Там же стрелкой показан поворот, при котором кристалл приближается к строго брегговскому положению. Очевидно, что изображения дислокаций будут расположены там, где плоскости решетки повернуты в направлении С. При повороте кристалла вокруг оси, перпендикулярной пучку электронов и вектору дифракции на такой угол, при котором абсолютная величина вектора s остается неизменной, а знак меняется на противоположный, изображения дислокаций переместятся в разные стороны так как это показано на рисунке стрелками А. В деформированных кристаллах часто наблюдаются дислокации противоположного знака, лежащие в параллельных плоскостях скольжения. Различие знаков векторов Бюргерса дислокаций можно установить по смещению изображений при изменении знака s. На рисунке 18а показаны призматические дислокационные петли вакансионного и внедренного типа, наклоненные к направлению электронного пучка, а также направление вектора дифракции H. Отклонение от строго брегговских условий дифракции таковы, что s> 0. Стрелками показаны направления локальных поворотов решетки, приближающих участки кристалла к положению s=0, которым и соответствует положение изображения. Если изменить знак s вращая кристалл, то , в соответствии с вышеизложенным, изображе- ние петли переместится так, как это показано на рисунке 18а.Таким образом, изменение размера изображения петли позволяет отличить петли вакансионного и внедренного типов. Легко убедиться, что то же изменение геометрии изображения будет, если оставить неизменным знак и величину s, изменив направление вектора дифракции Н. Следует отметить, что для однозначного определения типа петли необходимо знать плоскость наклона петли (рис. 18). Анализируя изменение формы петли при наклоне образца на большой угол вокруг нормали к отражающей системе плоскостей (при сохранении условия s=соnst ), можно это найти. При исследовании петель Франка для оценки их размеров можно так вырезать фольгу, чтобы плоскость залегания петель или хотя бы части петель была параллельна плоскости фольги. В этом случае на контраст влияет только компонента поля смещений u3 и изображение располагается симметрично относительно линии дислокаций.Важным аспектом исследования дислокационных петель является подсчет числа петель с учетом части петель, невидимых в данном отражении, при определении концентрации точечных дефектов, скоагулированных в петли. До сих пор при обсуждении контраста на дислокациях мы не учитывали, что наблюдение ведется в весьма тонких слоях и что поверхностные релаксационные эффекты могут приводить к смещениям, дающим контраст. Рассмотрим два характерных примера. Пусть в очень тонкой фольге имеется краевая дислокация с осью, параллельной плоскости фольги. Такая дислокация создает поворот фольги
где t-толщина фольги, y-глубина залегания дислокации под поверхностью. Знак изгиба (при известном s), определяемый по изменению контраста, разделенных дислокацией участков, а количественно по смещению кикучи-линий, позволяет определить знак вектора Бюргерса. Особенно существенны релаксационные эффекты для дислокаций, ось которых нормальна к плоскости фольги. В частности, для винтовой дислокации с осью, нормальной к плоскости фольги, выполняется условие (Hb)=0 и в бесконечно толстом кристалле она была бы не видна. Но вблизи поверхности такая дислокация вызывает скручивание решетки вокруг своей оси. В результате плоскости ранее параллельные оси дислокации, слегка наклоняются, как это показано на рисунке 20. Вдоль линии, проходящей через центр дислокации параллельно Н, смещения параллельны отражающим плоскостям и контраста не дают. Характер контраста на изображении по обе стороны от этой линии при известных H и s позволяют отличить левовинтовую и правовинтовую дислокации. Краевые дислокации, нормальные плоскости фольги, из-за малых величин углов Брегга не должны давать контраста от сжатых и растянутых областей, так как при этом почти не меняется Плоские дефекты. Простейшим плоским дефектом является дефект упаковки, поскольку по обе стороны дефекта упаковки решетка имеет одинаковые параметры и ориентацию, но сдвинута на некоторый постоянный вектор u. Рассчитаем амплитуду, рассеянную колонкой , показанной на рисунке 21. Амплитуда, рассеянная верхней частью колонки равна: А1~ Для продолжения этой колонки, лежащей ниже дефекта упаковки ,координаты ячеек определяются с учетом сдвига на вектор смещения u ,который не зависит от z, получим: А2 Суммарная амплитуда равна А= А1+А2.Если вектор u равен вектору трансляции Для отражения Н и дефекта с вектором сдвига u= Рассмотрим теперь плоский дефект, при переходе через который слегка меняется ориентация решетки.Примером такого дефекта может служить когерентная двойниковая граница. Характер контраста в этом случае напоминает полосы от дефектов упаковки и его, обычно называют
Дата добавления: 2014-07-19; просмотров: 922; Нарушение авторских прав ![]() Мы поможем в написании ваших работ! |