Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




ТОПЛИВНЫЕ НАСОСЫ

Читайте также:
  1. Расходные емкости (топливные баки).
  2. Системы гидропитания (топливные системы) стенда.
  3. ТОПЛИВНЫЕ БАКИ
  4. ТОПЛИВНЫЕ СИСТЕМЫ
  5. ТОПЛИВНЫЕ ФИЛЬТРЫ

Насосы, применяемые в топливных системах самолетов, должны обеспечивать в зависимости от типа самолета подачу топлива от 0,3 до 100 м3 /ч и более при сравнительно невысоком давлении (не более 200 ...250 кПа) и небольших подпорах на входе. Они должны быть надежными в работе, иметь малые массу и габаритные размеры и большой ресурс работы. Кроме того, к топливным насосам предъявляются специальные требования, обусловленные температурой топлива и окружающего воздуха, величинами перегрузок, положением агрегата в пространстве и т.д. Из большого количества существующих в настоящее время типов насосов наиболее полно соответствуют этим требованиям лопастные и струйные насосы.

Лопастные (центробежные) насосы по сравнению с объемными имеют ряд преимуществ:

- работают при значительной частоте вращения рабочего колеса;

- обладают высокой производительностью;

- характеризуются малыми габаритами и небольшой массой;

- упрощается соединение крыльчатки с приводом (как, правило, напрямую), что устраняет сложные передаточные механизмы;

- обеспечивают свободное протекание топлива при неподвижной крыльчатке.

Все эти преимущества и относительно высокий к.п.д. делают лопастные насосы надежными в работе и удобными в эксплуатации.

Струйные насосы по сравнению со всеми перечисленными типами насосов имеют наименьшую массу и большую надежность, но обладают не всегда удовлетворительными характеристиками по экономичности из-за малых значений к.п.д.

 
Рис.5.10. Конструктивная схема внутрибакового ЭЦН: 1—электропривод; 2—топливный бак; 3—уплотнительное кольцо; 4—центробежный отражатель; 5—сетка; 6—уплотнительная манжета; 7—вал агрегата; 8—рабочее центробежное колесо; 9—корпус агрегата; 10—дренажный канал; 11—вентиляционный канал

Центробежные топливные насосы приводятся в действие с помощью различных типов приводов. Непосредственный привод от вала авиадвигателя наиболее надежен и экономичен, но может быть использован только для насосов, установленных непосредственно на авиадвигателе, например насосов второй ступени подкачки топлива. Для всех остальных топливных насосов применяются различные приводы: электрические, гидромоторные и пневмотурбоприводы.

Топливные насосы с приводом от электродвигателя.

Широкое распространение получили внутрибаковые электроприводные центробежные насосы (ЭЦН) (рис.5.10). Основным преимуществом этих насосов является возможность их размещения внутри бака с использованием топлива для охлаждения электродвигателя.

Надежность и ресурс работы внутрибаковых ЭЦН во многом зависит от степени герметичности и, следовательно, от совершенства конструкции уплотнений вращающихся деталей. Охлаждение уплотнительной манжеты осуществляется топливом, просачивающимся между манжетой и валом насоса. Просачивающееся топливо, попадая на центробежный отражатель 4, закрепленный на валу, отбрасывается к дренажному каналу 10, к которому подсоединяется трубка, свободный конец которой выводится за борт самолета в область пониженного давления.

Рис. 5.11.. Принципиальная схема установки и питания струйного насоса I ступени подкачки топлива: 1 - топливный бак; 2 - струйный насос; 3 – подача топлива к двигателю; 4 - трубопровод подачи высоконапорного топлива;5 - электроприводной топливный насос с трубопроводом подкачки топлива от электроприводного насоса

Насосы с приводом от электродвигателей имеют достаточно высокую надежность. В подкачивающих и перекачивающих топливных насосах на случай выхода из строя привода подача топлива обеспечивается самотеком (благодаря подсосу последующей насосной ступенью) по внутренним каналам крыльчатки.

В качестве привода центробежных насосов наибольшее распространение получили электродвигатели постоянного тока со смешанным возбуждением и трехфазные асинхронные двигатели переменного тока. Необходимо отметить, что ресурс электропривода постоянного тока определяется надежностью щеточно-коллекторного узла.

Большим преимуществом электродвигателей переменного тока благодаря отсутствию коллектора и щеток является безотказность в работе в сильно разряженной атмосфере с пониженной влажностью (большие высоты). Недостатками электродвигателя переменного тока являются строго регламентированные частоты вращения и меньший, чем у двигателей постоянного тока, пусковой момент, что в некоторых случаях ограничивает их применение.

Топливные насосы с пневмотурбоприводом. Потребная мощность привода насосных агрегатов в некоторых случаях может превышать (7... 10) кВт.

Рис. 5.12. Зависимость к. п. д. струйного насоса от соотношения расходов эжектируемого и эжектирующего топлива (qсм=Ga/Gi) и соотношения площадей смесительного трубопровода и сопла (m=Fа/F i)

Пневмотурбопривод обладает небольшой массой и габаритными размерами при больших мощностях, высокой надежностью и отсутствием влияния привода на тепловой баланс топлива. Этим объясняется широкое распространение такого типа привода на сверхзвуковых самолетах с высокими температурами топлива на входе в двигатель.

Применение насосов с приводом от воздушной турбины позволяет уменьшить мощность агрегатов, установленных непосредственно на двигателе. При этом уменьшается мидель силовой установки и ее масса.

Струйные насосы. На самолетах с ГТД при наличии на борту высоконапорного топлива из линии перепуска основных и форсажных насосов двигателя струйные насосы благодаря простоте их конструкции, удобству в эксплуатации, надежности в работе и практически неограниченному ресурсу получают все большее распространение.

Принципиальная схема установки и питания струйного насоса I ступени подкачки топлива показана на рис.5.11. В такой схеме топливо из расходного бака поступает в струйный насос и далее подается к центробежному насосу второй ступени подкачки. Высоконапорное топливо в струйное сопло насоса поступает по трубопроводу 6 из контура постоянного перепуска насоса-регулятора ТРД. Электроприводной насос, размещенный в топливном баке, подключен трубопроводом 7 к магистрали между струйным насосом и насосом П ступени подкачки и обеспечивает подачу топлива на режимах приемистости двигателя.

Возможны схемы питания струйных перекачивающих насосов за счет резервной мощности подкачивающих насосов I ступени, установленных в расходном баке, поскольку их полная производительность используется лишь в течение короткого времени на режиме набора самолетом высоты.

На рис. 5.12. приведены данные КПД эжектора для различных значений, коэффициента смешения q см и различных коэффициентов размерных соотношений m. Как видно из этих графиков, максимально возможный КПД струйного насоса составляет 27 % при q0 = 2,25 и m = 7.75.

Значения КПД струйного насоса (25...27) % могут быть получены только при постоянных значениях коэффициента смешения q cм и коэффициента размерных соотношений m, что может быть реализовано в некоторых случаях только для перекачивающих насосов. Получить высокие значения КПД для струйных насосов I ступени подкачки, для которых характерны переменные значения коэффициента смешения q см, можно только при применении специальных систем регулирования соотношения размеров сечения сопла и смесительного трубопровода (при переменном значении коэффициента m).

 


<== предыдущая страница | следующая страница ==>
СПОСОБЫ ПОДАЧИ ТОПЛИВА К ДВИГАТЕЛЯМ | КАВИТАЦИЯ. Кавитация (от латинского cavitas – пустота) произвольный переход жидкой фазы топлива в парообра

Дата добавления: 2014-10-08; просмотров: 670; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.004 сек.