Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




ПАТОФИЗИОЛОГИЯ ЛИХОРАДКИ

Читайте также:
  1. ГЕМОРРАГИЧЕСКИЕ ЛИХОРАДКИ
  2. Лекция №25 Патофизиология почек
  3. Патоморфология и патофизиология нервной системы.
  4. ПАТОФИЗИОЛОГИЯ БЕЛКОВОГО ОБМЕНА
  5. ПАТОФИЗИОЛОГИЯ ВОДНО – ЭЛЕКТРОЛИТНОГО ОБМЕНА
  6. ПАТОФИЗИОЛОГИЯ ВОСПАЛЕНИЯ
  7. ПАТОФИЗИОЛОГИЯ ДЫХАТЕЛЬНОЙ НЕДОСТАТОЧНОСТИ
  8. ПАТОФИЗИОЛОГИЯ ЖИРОВОГО ОБМЕНА
  9. ПАТОФИЗИОЛОГИЯ КИСЛОТНО-ОСНОВНОГО БАЛАНСА
  10. ПАТОФИЗИОЛОГИЯ ЛЕЙКОЗОВ

Лихорадка - типовой патологический процесс, в основе которого лежит накопление тепла в организме в результате перестройки терморегуляции под действием чрезвычайных раздражителей инфекционной и неинфекционной природы. Основными симптомами лихорадки являются: озноб, жар, испарина. Лихорадка может быть симптомом, неспецифическим проявлением или самостоятельным заболеванием.

Сравнительно-патологическое значение лихорадки.

Способность к развитию лихорадки сформировалась в процессе эволюции: она наблюдается только у гомойотермных животных и человека. Пойкилотермные животные отвечают на действие ряда патогенных раздражителей повышением теплопродукции, но задержки тепла не происходит: наряду с теплопродукцией активируются и процессы теплоотдачи. В онтогенезе способность развивать лихорадочную реакцию формируется по-разному в зависимости от степени развития ЦНС. У новорожденных и детей первого года жизни способность регулировать теплоотдачу развита недостаточно, поэтому лихорадка протекает у них атипично: она колеблется скачкообразно. В этом возрасте чаще наблюдаются явления перегревания и переохлаждения.

О лихорадке знали давно, но научное понимание процесса развития лихорадки определилось в XX веке.

Существует две теории развития лихорадки:

1) обменно-интоксикационная теория (Р.Вирхов)

2) терморегуляторная теория (С.П.Боткин, И.П.Павлов)

Согласно обменно-интоксикационной теории лихорадка - это инфекционный процесс, процесс самоотровления. Возникновение ее связано с нарушением обмена веществ. С точки зрения терморегуляторной теории лихорадка рассматривается как рефлекс, в основе которого лежит нарушение равновесия процессов теплоотдачи и теплопродукции в связи с перестройкой функции терморегуляторного центра. В настоящее время принята терморегуляторная теория.

 

Х Х Х Теплопродукция

Терморецепторы ТВН

Т Т Т Теплоотдача

Как происходит терморегуляция в организме? Главный центр терморегуляции находится в заднем гипоталамусе и представлен тормозными вставочными нейронами (интернейронами). Их главной функцией является определение и поддержание нормального температурного гомеостаза. Информация о температуре организма к интегративному центру поступает с периферических терморецепторов (холодовых и тепловых, глубоких и поверхностных: с внутренних органов, сосудистой стенки), а также с центральных тепловых и холодовых терморецепторов, которые расположены в гипоталамусе и спинном мозге. Главный терморегуляторный центр анализирует эту информацию. Если температура снижается, то возбуждаются холодовые термонейроны, которые усиливают теплообразование, и тормозятся тепловые термонейроны, которые ограничивают теплорассеивание. В результате этих процессов температура остается в пределах нормы (36,60 ). При нарушении этого равновесия развивается лихорадка.

По своему происхождению лихорадка бывает инфекционной и неинфекционной. Инфекционная лихорадка возникает при заболеваниях бактериальной и вирусной природы. Неинфекционная лихорадка встречается при стрессе, введении больших доз лекарственных препаратов (например, фенамина, фенацетина, кофеина), при патологических процессах и заболеваниях (кровоизлиянии в мозг, ожогах, инфаркте миокарда, аллергических реакциях).

Лихорадка

Инфекционная Неинфекционная

Заболевания Эмоциональ- Лекарствен- При соматических

бактериальной ная ная заболеваниях

и вирусной

природы

большие дозы кровоизлияния в мозг,

фенамина, фена- инфаркт миокарда, ожоги,

цетина, кофеина аллергические реакции

 

Этиология лихорадки

Чрезвычайные раздражители, которые вызывают развитие лихорадки, носят название пирогенов.

греч. pyros - огонь

Все пирогены делятся на экзопирогены и эндопирогены, по механизму действия - на первичные и вторичные. Первичные (экзопирогены) являются этиологическими, пусковыми, вторичные (эндопирогены) - патогенетическими.

Пирогены

Экзопирогены Эндопирогены

Лейкопирогены Продукты тканевого ПИК

распада

 

Экзопирогены чаще бывают бактериального происхождения и представляют собой липополисахариды. Это высокомолекулярные соединения. Действующим, активным началом экзопирогенов является липоид А. Из бактерий получен искуцсственный пироген - пирогенал.

Эндопирогены представлены продуктами распада тканей и лейкопирогенами. Лейкопирогены - низкомолекулярные пептиды, образуются под влиянием экзопирогенов. К эндопирогенам относится патоиммунный комплекс (ПИК). Основную роль в развитии лихорадки играют лейкопирогены. Они способны перестраивать регуляцию теплового обмена на более высоком, установочном уровне.

Стадии лихорадки

Существует 3 стадии развития лихорадки:

I. Стадия повышения температуры

II. Стадия стояния высокой температуры

III. Стадия снижения температуры

В основе этих стадий лежит перестройка процессов терморегуляции. В I стадии увеличиваются процессы теплопродукции и уменьшаются процессы теплоотдачи. Температура повышается. Характерным симптомом этой стадии является озноб. Во II стадии эти процессы выравниваются на более высоком уровне, чем в норме. Симптомом II стадии является жар. В III стадии снижаются процессы теплообразования и преобладают процессы теплоотдачи. Основным симптомом этой стадии является испарина, потоотделение. Снижение температуры на III стадии может быть медленным, литическим (несколько часов, дней) или быстрым, критическим вследствие резкого расширения сосудов, что может привести к развитию коллапса (острой сосудистой недостаточности).

По степени повышения температуры лихорадка разделяется на субфебрильную (повышение температуры в пределах 37-380 С), умеренную (38-390 С), высокую (39-410 С) и гиперпиретическую (выше 410 С). В зависимости от характера колебаний суточной температуры во II стадии выделяют следующие виды лихорадки: 1) постоянную (febris continua) - колебания температуры не превышают 10 С (крупозная пневмония, брюшной и сыпной тиф), 2) послабляющую (febris remittens) - суточные колебания составляют 1,5-20 С (большинство вирусных и многих бактериальных инфекций), 3) перемежающую (febris intermittens) - суточные колебания температуры 2-30 С (малярия, гнойная инфекция, туберкулез), 4) изнуряющую (febris hectica) - суточные колебания температуры достигают 3-50 С (сепсис, перитонит, гнойная инфекция).

Механизмы развития лихорадки

Различают 4 механизма развития лихорадки:

1. Клеточно-молекулярный механизм

2. Рефлекторный механизм

3. Центральный механизм

4. Гуморальный механизм

Клеточно-молекулярный механизм

При участии этого механизма происходит накопление тепла в организме за счет увеличения теплопродукции. Увеличение теплопродукции происходит при окислении белков, жиров и углеводов в присутствии кислорода. Примерно 50% энергии образуется при выработке АТФ, а 50% - при свободном окислении

Пирогенал,

Кишечная палочка Несократительный Химические

АТФ термогенез реакции Вторичная

теплота

Сократительный Сокращение

термогенез мышц

Б, Ж, У + О2

Свободное окисление Первичная

Дифтерийный токсин, теплота

тироксин

Выработка АТФ происходит при окислительном фосфорилировании. Часть АТФ расходуется на химические реакции (осмотические реакции и другие) - на несократительный термогенез. Другая часть энергии АТФ расходуется на сократительный термогенез, сокращение мышц. В результате этих реакций образуется вторичная теплота.

Кроме вторичной теплоты, в повышении температуры участвует и первичная теплота. Она образуется в результате свободного окисления и интенсивно протекает в жировой ткани, в частности, при окислении бурого жира. Образование первичной и вторичной теплоты способствует повышению температуры, развитию лихорадки.

Образование первичной теплоты повышает потребность тканей в кислороде, что менее благоприятно для организма. При преимущественном образовании первичной теплоты может возникнуть дефицит кислорода. В условиях гипоксии образуются кислые метаболиты, которые нарушают функцию тканей и органов. Развивается тепловая альтерация тканей. Поэтому лихорадка с преобладанием первичной теплоты сопровождается интоксикацией. Это часто наблюдается у детей, у которых преобладают процессы химической терморегуляции, но может возникать и у взрослых, если лихорадочный процесс протекает длительно и с высокой температурой.

Существует ряд пирогенов, которые влияют на образование первичной или вторичной теплоты. Так, образование первичной теплоты активируется при воздействии дифтерийного токсина, тироксина. Тироксин вызывает разобщение окислительного фосфорилирования, при этом потребляется большое количество кислорода. На выработку вторичной теплоты большое влияние оказывает пирогенал, некоторые штаммы кишечной палочки.

Рефлекторные механизмы

В основе рефлекторного механизма лежит нарушение соотношения процессов теплопродукции и теплоотдачи. Разберем этот механизм с точки зрения стадий развития лихорадочного процесса.

В I стадии, стадии повышения температуры участвуют термочувствительные (холодовые и тепловые) рецепторы и нетермочувствительные (адренорецепторы и холинорецепторы). На этой стадии изменяется реактивность тепловых и холодовых рецепторов. Повышается активность холодовых рецепторов. Происходит это в результате рефлекторного спазма периферических артериол с участием a -адренорецепторов. Процессы теплоотдачи уменьшаются. Увеличивается различие температуры между внешней поверхностью организма (кожей) и внутренней средой. Это вызывает рефлекторное сокращение мышц (активируется сократительный термогенез), повышается теплообразование, возникает мышечная дрожь (озноб). Возникновению озноба и образованию вторичной теплоты способствует активация холинорецепторов (под влиянием ацетилхолина). Возбуждение b -адренорецепторов способствует окислению бурого жира и образованию первичной теплоты. Все это приводит к преобладанию процессов теплопродукции и повышению температуры.

Во II стадии повышается активность тепловых рецепторов. Происходит расширение артериол с участием b-адренорецепторов при воздействии адреналина, развивается гиперемия. II стадия характеризуется жаром. На этой стадии устанавливается новый уровень температуры по сравнению с исходным.

В III стадии снижается активность холодовых рецепторов, а активность тепловых рецепторов остается на высоком уровне. Угнетаются процессы теплообразования, активируется теплоотдача. Эта стадия характеризуется снижением температуры, усиливается потоотделение. На этой стадии затормаживаются вазоконстрикторы и преобладают b адренергические и холинергические реакции, которые способствуют расширению сосудов.

 

 

Центральный механизм

В основе этого механизма лежит перестройка функции терморегуляторного центра, который находится в заднем отделе гипоталамуса. Там же находятся тормозные вставочные нейроны, на которые воздействуют лейкопирогены. Под влиянием пирогенов меняется также реактивность холодовых и тепловых рецепторов ЦНС, происходит изменение соотношения процессов теплообразования и теплоотдачи в организме. При этом меняется реактивность тормозных вставочных нейронов, и установочный уровень температуры, который в исходном состоянии находился в пределах нормальных колебаний температуры (около 36,60 С), смещается на новый, более высокий установочный уровень. Таким образом, под влиянием пирогенов формируется новая установочная температурная точка. В развитии лихорадки по центральному механизму большую роль играет ретикулярная формация. Через ретикулярную формацию в ЦНС поступает информация с периферических адренорецепторов. В зависимости от функционального состояния ретикулярной формации (активация или угнетение) наблюдается развитие или торможение лихорадочного процесса. Большую роль в развитии лихорадки играет ЦНС. При возбуждении ЦНС при воздействии стресса развивается эмоциональная лихорадка.

Гуморальные механизмы

Это - эффекторное звено развития лихорадки. В патогенезе лихорадки играют роль гормоны, нейромедиаторы, биологические активные вещества, простагландины.

Простагландин Е1 (ПГ Е1 ) является посредником между пирогенами и тормозными вставочными нейронами. Это приводит к накоплению цАМФ, что формирует новый уровень терморегуляции.

 

Пироген ПГ Е1 цАМФ ТВН Лихорадка

В развитии лихорадки играют роль катехоламины: норадреналин взаимодействует с a -адренорецепторами, вызывая торможение сосудистых реакций теплоотдачи, стимулирует интегративный центр терморегуляции. Адреналин взаимодействует с b- адренорецепторами бурого жира, способствуя образованию первичной теплоты, цАМФ, повышению активности несократительного термогенеза. Ацетилхолин активирует сократительный термогенез. Серотонин тормозит сосудистые реакции теплоотдачи.

Большую роль в развитии лихорадки играют гормоны. Выделяют пролихорадочные и противолихорадочные гормоны.

Пролихорадочные гормоны: СТГ, тироксин, ТТГ, прогестерон. Они стимулируют центральное звено в механизмах развития лихорадки, повышают чувствительность тканей к катехоламинам, повышают образование первичной и вторичной теплоты, увеличивают образование цАМФ.

Тироксин Центрогенное звено

ТТГ Чувствительность

Прогестерон тканей к КА, цАМФ,

СТГ образование первичной

вторичной теплоты

 

Противолихорадочные гормоны: АКТГ, глюкокортикоиды, инсулин, андрогены. Эти гормоны тормозят выработку ПГ Е1 , снижают активность цАМФ, активность тормозных вставочных нейронов, прогестерона и препятствуют развитию лихорадочного процесса.

 

АКТГ

Глюкокортикоиды ПР Е1 цАМФ ТВН

Инсулин

Андрогены Прогестерон Лихорадка

 

Лихорадочный процесс оказывает влияние на обмен веществ и функцию органов и систем.

Нарушение обмена веществ при лихорадке

При лихорадке усиливается основной обмен, повышается потребление кислорода. На каждый 10 С повышения температуры основной обмен увеличивается на 10-12%. Усиливается распад гликогена, развивается гипергликемия и глюкозурия. Активируется распад жиров, происходит мобилизация жира из депо; жиры становятся источником энергии лихорадящих больных. При высокой температуре нарушается окисление жирных кислот и повышается образование кетоновых тел. При лихорадке может возникнуть отрицательный азотистый баланс в результате усиленного распада белков. При лихорадке нарушается водно-солевой обмен. В I стадии диурез повышается за cчет увеличения почечного кровотока. Во II стадии происходит задержка в организме натрия и воды. В III стадии - стадии снижения температуры - повышается потеря натрия и воды, развивается дегидратация.

Нарушение функций органов и систем при лихорадке

При лихорадке наблюдаются характерные изменения функции органов и систем. Со стороны ЦНС: при лихорадке повышается функция симпатической нервной системы, повышается раздражительность в начальных стадиях лихорадки. При высокой температуре развивается интоксикация и, как следствие, возникает торможение ЦНС, головная боль, бред, судороги, потеря сознания, кома. Сердечно-сосудистая система: при лихорадке развивается тахикардия, увеличивается минутный объем крови. Артериальное давление немного повышается в I стадию лихорадки, во II стадии остается без изменения, а в III стадии снижается. Может развиваться сердечно-сосудистая недостаточность, коллапс. Система дыхания: в I стадии лихорадки дыхание урежается, во II и III стадиях частота дыхательных движений увеличивается, развивается одышка. При высокой и длительной лихорадке может наблюдаться развитие периодического дыхания, особенно у детей. При лихорадке усиливается антитоксическая и антимикробная функции печени. В I стадии лихорадки диурез увеличивается в связи с повышением кровяного давления. Во II стадии диурез снижается, а в III стадию диурез вновь увеличивается вследствие потери хлоридов и натрия.

Угнетается функция желудочно-кишечного тракта: снижается секреция пищеварительных соков, слюны, снижается аппетит. Тормозится моторика желудка. кишечника. Может наблюдаться тошнота, рвота, усиление процессов брожения и гниения в кишечнике.

Значение лихорадки для организма

Клиницисты XIX века считали лихорадку опасной для жизни и стремились снизить температуру с помощью жаропонижающих средств. Однако искусственное снижение температуры при лихорадке не устраняло патологических изменений, связанных с развитием основного заболевания. Было показано, что искусственное снижение температуры утяжеляет течение инфекционных заболеваний. Мечников И.И. оценивал лихорадку как защитную реакцию. Лихорадочная реакция сформировалась в процессе эволюции как приспособительная реакция, поэтому ее надо рассматривать как положительную реакцию. В чем заключается положительная роль лихорадки?

В условиях умеренного повышения температуры (до 38,50 С) стимулируется выработка антител, интерферона, лизоцима, активируются процессы фагоцитоза. При лихорадке угнетается размножение некоторых бактерий и вирусов, стимулируется действие ряда лекарственных веществ, в частности, антибиотиков. Активируется антитоксическая и антимикробная функции печени, Активируется система "гипоталамус-гипофиз-кора надпочечников", стимулируются обменные процессы в клетках, повышается их функциональная активность.

Положительная роль лихорадочной реакции послужила основанием для использования пирогенной терапии для лечения ряда заболеваний, таких как сифилис, малярии.

В ряде случаев длительный лихорадочный процесс, сопровождающийся высокой температурой, оказывает отрицательное влияние на состояние организма. Развивается тепловая альтерация тканей. Может наблюдаться нарушение ряда физиологических функций: развивается периодическое дыхание, сердечные аритмии. Высокая лихорадка способствует накоплению в организме метаболитов, что вызывает явления интоксикации с потерей сознания и судорогами. Особенно опасна такая лихорадка у детей, так как дети еще не обладают устойчивой терморегуляцией. Тяжело переносят лихорадку люди пожилого возраста и с заболеваниями сердечно-сосудистой системы. Критическое падение температуры в III стадию лихорадки сопровождается резким снижением сосудистого тонуса и может вызвать у больного развитие коллапса.

 

 

Патофизиология тканевого роста

Среди различных механизмов, обеспечивающих жизнеспособность организма в экстремальных условиях, одно из ведущих мест занимает активность клеточных процессов, происходящих в отдельных органах и тканях. В здоровом организме происходит постоянное обновление клеток. На cмену погибшим клеткам образуются новые клетки. Если воспроизводство клеток соответствует функциональной нагрузке органов и тканей, то это свидетельствует о нормальном адаптивном ответе на действие раздражителя. Часто ответная реакция клетки или ткани не соответствует функциональному запросу. Тогда нарушаются адаптивные реакции, происходят функциональные и структурные изменения в виде нарушения тканевого роста.

Рост всего организма или отдельных его клеток, тканей или органов является патологическим, если он перестает способствовать существованию организма в окружающей его среде и становится вредным для него, приводя к метаболическим, функциональным и структурным нарушениям. Это изменения могут проявляться в виде двух процессов: 1) гипербиотических и 2) гипобиотических процессов.

1. Гипербиотические процессы: а) гипертрофия, б) гиперплазия, в) регенерация, г) опухолевый рост.

2. Гипобиотические процессы: а) дистрофия, б) атрофия, в) кахексия.

Коснемся общих понятий этих процессов, механизмов их развития и регуляции.

Гипербиотические процессы

Гипербиотические процессы - это повышение жизнедеятельности тканей, органов, отдельных клеток, сопровождающееся их избыточным ростом и преобладанием анаболических реакций.

Гипертрофия - это процесс увеличения объема органа или его части без увеличения числа клеток.

Виды гипертрофий

Различают ложную и истинную гипертрофию. Ложная гипертрофия - это увеличение органа, вызванное чрезмерным разрастанием межуточной и жировой ткани при атрофии его паренхиматозных элементов (например, разрастание в мышце жировой ткани при одновременной атрофии мышечных волокон).

Истинная гипертрофия - это увеличение объема специфически функционирующих паренхиматозных элементов органа.

Ложная ГИПЕРТРОФИЯ

Истинная

 

Компенса- Викарная Регенера- Гормональная

торная ционная

Физиоло- Патологи-

гическая ческая

К истинной гипертрофии относится компенсаторная гипертрофия, обусловленная увеличением функции ткани или органа физиологического характера (рабочая гипертрофия) или при каком-либо патологическом процессе (гипертрофия миокарда при пороках сердца). Викарная гипертрофия - это гипертрофия при гибели или выключении одного из парных органов (например, почки, легкого). Регенерационная гипертрофия развивается после повреждения органа или его частичной резекции (например, печени). Гормональная гипертрофия возникает в результате нарушения функции эндокринной системы (гипертрофия конечностей при гиперпродукции СТГ - акромегалия).

Гиперплазия - увеличение объема органа или ткани за счет увеличения числа клеток и внутриклеточных структур вследствие повышенной функции органа или в результате патологического новообразования. Примером может служить гиперплазия ряда эндокринных желез: тимуса, надпочечников.

Регенерация - это восстановление организмом участков органов или тканей, поврежденных или погибших в результате какого-либо патологического процесса.

Регенерация может быть физиологическая, репаративная и патологическая.

Регенерация

Физиологическая Репаративная Патологическая

Клеточная Внутрикле-

точная Физиологическая регенерация - это непрерывное обновление структур на клеточном (смена клеток крови, эпидермиса) и внутриклеточном (обновление клеточных органелл) уровнях, которые обеспечивают нормальное функционирование органов и тканей.

Репаративная регенерация - это полная или неполная восстановление внутриклеточных структур, участков ткани или органа, поврежденных в результате какого-либо патологического процесса.

В силу различных причин (гиповитаминозы, истощение) течение регенерации может принимать затяжной характер, качественно извращаться, сопровождаясь образованием грануляций. В таких случаях регенерация становится патологической.

Таким образом, процессы гипертрофии, гиперплазии и регенерации взаимосвязаны, хотя имеют свои особенности.

Если увеличение массы органа, числа клеток или внутриклеточных структур способствует нормальному росту тканей и их функции, то эти процессы имеют защитно-приспособительный, адаптивный характер. Они подчиняются нейрогуморальной регуляции. При нарушении регуляторного механизма начинается безудержное деление клеток. Изменение роста по такому типу представляет собой опухоль.

Опухоль - это типовая форма нарушения тканевого роста, проявляющаяся патологическим разрастанием структурных элементов ткани и характеризующаяся атипичным ростом, нарушением обмена веществ, структуры и функции.

Остановимся на краткой характеристике доброкачественных опухолей и их отличии от злокачественных опухолей, гипертрофии и гиперплазии.

В отличие от гипертрофии и гиперплазии опухоль всегда превышает объем ткани или органа, где развивается. Эти опухоли не имеют никакого приспособительного значения. Особенностями доброкачественных опухолей является экспансивный и медленный рост без метастазирования. При доброкачественных опухолях в отличие от злокачественных слабо выражен тканевой атипизм, характерно преобладание аэробных процессов. По строению доброкачественные опухоли напоминают зрелую, дифференцированную ткань. Они очень часто представлены одним видом ткани (миома, липома, эпителиома), хотя иногда могут включать различные ткани (например, тератома). Наличие разных видов тканей в тератоме связано с нарушением формирования тканей в процессе эмбриогенеза. Влияние доброкачественной опухоли на организм носит местный характер, однако в ряде случаев могут оказывать общее влияние и стать опасным для жизни (опухоли в головном мозге, полостных органах).

Следовательно, в зависимости от особенностей проявления тканевого роста (гипертрофия, гиперплазия, регенерация или опухоль) могут преобладать патологические или защитно-приспособительные, саногенетические реакции.

Это касается гипертрофии, гиперплазии и, особенно, процессов регенерации. Ткани организма обладают различной регенераторной способностью. Для анализа различий регенераторной способности тканей важно использовать эволюционный подход. Более выраженная регенераторная способность у низкоорганизованных животных по сравнению с высокоорганизованными обусловлена особыми межклеточными и межтканевыми взаимодействиями, в основе которых лежат законы гомологичных и гетерогенных тканей. У низкоорганизованных животных преобладают межклеточные взаимодействия, в которых участвуют гомологичные ткани (эпителий-эпителий), поэтому регенерация у них наиболее выражена. По мере эволюционного развития организма присоединяются межтканевые взаимодействия (например, эпителий-мышечная ткань). В этом случае участвуют гетерогенные ткани, что снижает их регенераторную способность.

Механизмы развития гипербиотических процессов

Большую роль в процессах адаптации организма к действию повреждающего фактора в первую очередь играют гипертрофия, гиперплазия и регенерация. На примере процесса регенерации проанализируем общие механизмы гипербиотических процессов.

Процессы регенерации тесно связаны с обменом веществ. С другой стороны, изменения метаболизма непосредственно влияют на скорость регенерации. Продукты повреждения тканей являются регенераторными стимулами размножения клеточных элементов. Среди этих продуктов большую роль играет тромбоцитарный фактор роста, а также раневые гормоны (протеазы, полипептидазы), трефоны - продукты распада лейкоцитов, десмоны - тканевые специфические вещества. Они появляются в начальной стадии повреждения, когда стимулируются процессы протеолиза, липолиза, развивается ацидоз, наблюдаются явления гидратации тканей. Под влиянием этих факторов происходит пролиферация гистиоцитов и фибробластов. Этому способствует активация таких ферментов как 5-нуклеозидаза, аденозинтрифосфатаза. В механизмах заживления ран первичным натяжением играет роль разрастание клеток эпидермиса. Стимулом для размножения этих клеток является реакция фибробластов с фибрином при участии тромбоцитарного фактора роста. Происходит эпителизация раны, повреждения.

При заживлении ран вторичным натяжением на фоне пролиферации гистиоцитов и фибробластов образуется грануляционная ткань. Из фибробластов освобождается коллагеназа. Сначала она способствует новообразованию нежных коллагеновых и эластических волокон благодаря накоплению сульфгидрильных групп. В дальнейшем происходит лизис волокон с образованием грубых коллагеновых волокон. Это сопровождается угнетением окислительно-восстановительных процессов. На последней стадии происходит дегидратация тканей, снижение биосинтетических процессов, образование рубца (см. схему).

Гипобиотические процессы

Гипобиотические процессы - это процессы, характеризующиеся снижением жизнедеятельности тканей, обусловленные преобладанием катаболических процессов. К ним относятся дистрофия, атрофия и кахексия.

Дистрофия - это типовой патологический процесс, в основе которого лежит нарушение тканевого метаболизма. При развитии дистрофии преобладают расстройства регуляторных механизмов: 1) ауторегуляция клетки при воздействии токсических веществ, ионизирующей радиации с развитием энергетической недостаточности; 2) нарушение транспортных систем и развитие гипоксии; 3) нарушение функции нейроэндокринной системы

Дистрофия

 

Ауторегуляция Нарушение Нейроэндокринная

клетки транспортных система

систем

Энергетический Эндокрино- Нейротрофическая

дефицит Гипоксия патии и церебральная

дистрофия

 

Атрофия - типовой патологический процесс, сопровождающийся значительным нарушением метаболизма, уменьшением массы и объема органа или ткани и ослаблением или прекращением их функции.

В основе атрофии лежит преобладание процессов дисссимиляции над процессами ассимиляции. Это связано со снижением активности цитоплазматических ферментов. Основные механизмы развития атрофии.

 

Атрофия

От недостатка От бездействия Сдавление органов Денервационный

питания и тканей синдром

 

Дефицит в пище Почки (затрудненность- Эндокринной

белка, гиповита- мочеиспускания) железы

минозы А и С

Снижение Гипофизарная

функции кахексия

 

Денервационный синдром характеризуется изменениями в органах и тканях после их денервации. Степень нарушения функций различных тканей и органов после денервации различная. В покровных тканях (эпителий, слизистые, кожа) наблюдаются глубокие расстройства метаболизма с образованием трофических язв. В то же время деятельность ряда внутренних органов (сердца, желудочно-кишечного тракта) через некоторое время восстанавливается. Однако теряется способность этого органа приспособляться к новым условиям существования. Денервированное сердце в условиях покоя работает почти без изменения по сравнению с интактным сердцем. Но любая незначительная нагрузка вызывает заметные изменения функции сердца.

Кахексия - крайняя степень истощения организма, характеризующаяся глубокими нарушениями обмена веществ, резким исхуданием, физической слабостью, снижением физиологических функций. По происхождению. кахексия бывает:

Кахексия

Алиментарная Раневая Раковая При лучевой болезни

Дефицит белка, Гипопро- Отрицательный Блокада тиоловых

авитаминозы теинемия азотистый баланс ферментов

Распад тканевых белков Нарушение синтеза ДНК

Несмотря на ряд различий развития гипербиотических и гипобиотических процессов, выделяют общие механизмы их регуляции.

Патофизиологические механизмы регуляции гипербиотических

и гипобиотических процессов

Нейрогенные механизмы

Эти механизмы связаны с трофической функцией нервной системы. Возбуждение ЦНС снижает активность процессов клеточной пролиферации и регенерации. Десимпатизация органа, уменьшает содержание в нем катехоламинов и усиливает митоз. Экспериментальное повреждение коры головного мозга, особенно, вентромедиальных ядер гипоталамуса, задерживает процессы заживления ран. Денервация ткани тормозит репаративную регенерацию, способствует переходу ее в патологическую, ведет к образованию трофических язв.

Гормональные механизмы

Установлено, что гиперфункция щитовидной и половых желез, гиперсекреция СТГ и минералокортикоидов стимулирует развитие компенсаторной гипертрофии и регенерации, митотическую активность клеток. Недостаток СТГ после гипофизэктомии, тиреоидэктомия, снижение функции половых желез, гиперсекреция глюкокортикоидов подавляют гипертрофию и регенерационные процессы, снижает синтез ДНК. При воздействии кортизола задерживается заживление ран, происходит развитие грануляционной ткани, подавляется пролиферация фибробластов.

Инсулин стимулирует транспорт аминокислот и глюкозы через мембраны мышечных клеток, активирует в них синтез белка, стимулирует переход фибробластов из периода клеточного деления G1 (образование РНК) в период S (образование ДНК), ускоряет митоз.

Аминокислоты

Клетка Синтез белка

Глюкоза

Инсулин

Переход фибробластов

Стимуляция митоза

из периода G1 в период S

Гуморальные механизмы

Гуморальные факторы могут как стимулировать, так и ингибировать процессы гипертрофии и пролиферации.

Длительное введение простагландина Е2 приводит к гиперплазии слизистой оболочки желудочно-кишечного тракта.

Стимулируют размножение клеток и синтез ДНК тромбоцитарный фактор роста, продукты поврежденной ткани (протеазы, полипептиды, десмоны), группа регуляторных пептидов (гастрин, холецистокинин), интерлейкин 1 и 2, трефоны, колониеобразующий фактор, эндотоксины.

Большую роль в процессах тканевого роста играют циклические нуклеотиды (цАМФ и цГМФ). Повышение активности цАМФ тормозит синтез нуклеозидкиназы, снижает синтез нуклеиновых кислот, ингибирует митотическую активность.

цАМФ нуклеозидкиназа синтез нуклеиновых кислот митоз

Увеличение содержания цГМФ способствует пролиферации.

Ряд гуморальных факторов тормозит процессы тканевого роста. В частности, в клетках, находящихся в состоянии митоза, вырабатываются специфические вещества - кейлоны. Их увеличение ведет к торможению синтеза ДНК и митоза.

Кейлоны Аденилатциклаза цАМФ Митоз

Функциональные механизмы

В условиях поврежденного органа скорость регенерации в значительной мере определяется количеством удаленной ткани и характером повреждения. Как это происходит? Увеличение функции органа, снижая концентрацию макроэргов (АТФ, креатинфосфата - КФ), активирует генетический аппарат (транскрипцию РНК, ДНК в ядрах клеток). В этом случае повышается синтез белка, увеличивается масса органа.

Функция Активация генома

АТФ, КФ (скорость транскрип- Синтез Регенерация, компен-

органа ции ДНК, РНК в белка саторная гипертрофия

ядрах клеток)

Иммунные механизмы

Показано, что лимфоциты способны переносить регенераторную информацию. С одной стороны, способны влиять на регенераторные процессы, а, с другой стороны, - травма, повреждение изменяют иммунное состояние организма. Преобладание В-лимфоцитов стимулирует регенерацию, преобладание Т-лимфоцитов тормозит ее.

В-лимфоциты Регенерация Т-лимфоциты

В то же время при травме органа снижается активность Т-супрессоров и повышается активность Т-эффекторов.

Т-супрессоры Травма Т-эффекторы

Генетические механизмы

Мутации гена под влиянием физических и химических факторов вызывают трансформацию генного аппарата и чаще приводят к преобладанию гипобиотических процессов.

Метаболические механизмы

При гипербиотических процессах преобладают анаболические процессы и активируется ферментативный синтез крупных молекул углеводов, белков, липидов. Вследствие этих процессов стимулируются компенсаторная гипертрофия и регенерация. Гипобиотические процессы характеризуются преобладанием катаболических процессов, активным разрушением биомолекул, распадом тканевых и клеточных структур.


Заживление ран

первичным натяжением

 

Фибрин + Фибробласты Эпидермис

 

 

Тромбоцитарный фактор роста

Раневые гормоны Гистиоциты Фибробласты Грануляционная ткань

Трефоны, десмоны

5-нуклеотидаза,

аденозинтрифосфатаза Новообразование нежных коллагеновых

Накопление и эластических волокон

Стимуляция протеолиза, липолиза; SH-групп

ацидоз, гидратация тканей

 

Коллагеназа

Лизис волокон

 

Угнетение окислительно- Образование грубых

восстановительных процессов коллагеновых волокон

 

Дегидратация тканей, снижение

биосинтетических процессов Рубец

 

 

Заживление ран вторичным

натяжением

 

ПАТОФИЗИОЛОГИЯ ГИПОКСИИ

Гипоксия - типовой патологический процесс, характеризующийся снижением напряжения кислорода в тканях ниже 20 мм рт.ст. Патофизиологической основой гипоксии является абсолютная или относительная недостаточность биологического окисления.

Классификация гипоксий

1. Гипоксическая гипоксия

2. Циркуляторная гипоксия

3. Гемическая гипоксия

4. Тканевая гипоксия

5. Смешанная гипоксия

Гипоксическая гипоксия

Выделяют 3 формы

1. Экзогенная (гипобарическая) гипоксия

Она связана со снижением парциального давления кислорода в атмосфере (горная, высотная болезнь, при космических полетах). На уровне 4 км. рО2 во вдыхаемом воздухе снижается в 2 раза, на высоте 8 км - в 3 раза. Развивается гипоксемия и гипокапния, газовый алкалоз. Критический уровень рО2 = 30 мм рт.ст. Нарушается диффузия кислорода из крови в клетки.

2. Респираторная (легочная) форма

Эта форма встречается при заболеваниях легких, бронхитах, легочной гипертензии, шунтировании крови между легочной артерией и легочной веной. Эта форма сопровождается гипоксемией и гиперпкапнией (увеличение рСО2 выше 50 мм рт.ст.). При респираторной форме гипоксии может развиваться дыхательная недостаточность, газовый ацидоз, отек мозга.

3. Дисрегуляторная форма гипоксии

Она встречается при нарушении регуляции дыхания со стороны дыхательного центра (различные поражения ЦНС), нарушении иннервации диафрагмы, межреберных мышц.

Циркуляторная гипоксия

Различают 3 формы:

1. Ишемическая форма гипоксии - возникает при снижении объемного кровотока. Она может быть регионарной (при ишемии отдельных органов и тканей) или общей (при сердечной недостаточности левого желудочка, шоке, коллапсе).

2. Застойная форма гипоксии - возникает при венозном застое, замедлении кровотока. Она может быть местной (при тромбофлебитах вен нижних конечностей) или общей (при сердечной недостаточности правого желудочка сердца). При повышении внутригрудного давления уменьшается венозный возврат крови к сердцу и возникает застой крови в венах.

3. Перегрузочная форма гипоксии - возникает при полетах (при взлете, посадке), использовании скоростных лифтов. В этом случае происходит перераспределение кровотока: при быстром подъеме вверх (взлет, подъем на лифте) кровь перемещается в нижнюю часть тела, нижние конечности. Развивается ишемия головного мозга вплоть до потери сознания. При быстрой посадке самолета, у парашютистов, при спуске лифта кровь перемещается в верхнюю часть тела. В этом случае происходит переполнение сосудов верхней половины тела. Возможно кровоизлияние в мозг. Перегрузочная форма гипоксии является сочетанием застойной и ишемической форм.

Гемическая гипоксия

Гемическая гипоксия возникает при количественных и качественных изменениях гемоглобина в крови. При кровопотерях, анемиях содержание гемоглобина в крови уменьшается, снижается кислородная емкость крови.

Качественные изменения гемоглобина связаны с его инактивацией. При отравлении угарным газом гемоглобин связывается с окисью углерода и образуется карбоксигемоглобин (HbCO). При отравлении нитритами и нитратами образуется метгемоглобин - HbOH. При этом двухвалентное железо переходит в трехвалентное (окисленное) и гемоглобин не способен связывать кислород. При отравлении соединениями, содержащими серу, образуется сульфгемоглобин (HbS). Связь гемоглобина с этими веществами более прочная, чем с кислородом.

Гемическая гипоксия может развиваться при нарушении диссоциации оксигемоглобина.

1. При гиперкапнии (ацидозе), лихорадке оксигенация в легких нарушается и сродство гемоглобина к кислороду в легких снижается. Уменьшается образование оксигемоглобина - сдвиг кривой диссоциации оксигемоглобина вправо.

2. При алкалозе (гипокапнии), охлаждении сродство гемоглобина к кислороду повышается. Гемоглобин насыщается кислородом при низком рО2 в плазме. Оксигемоглобин, который подходит к клетке, не отдает кислород (прочная связь) - сдвиг кривой диссоциации оксигемоглобина влево.

Тканевая гипоксия

Тканевая гипоксия возникает в результате нарушения митохондриального и микросомального окисления. Недостаточное снабжение клетки кислородом ведет к абсолютной недостаточности биологического окисления. Относительная недостаточность биологического окисления возникает при повышенной потребности клетки в кислороде.

Митохондриальное окисление связано с транспортом электронов в дыхательной цепи. В норме при окислении субстрата образуется 3 молекулы АТФ. При нарушении митохондриального окисления в условиях гипоксии развивается биоэнергетическая недостаточность.

Нарушение митохондриального окисления

2 е 2 е 2 е 2 е

Субстрат ----- НАД.Н ------ ФАД ------ Ко Q------ Цитохромы

!

! 2 е

Н2 1/2 О2 Цитохромоксидаза

Н2 О

 

Нарушение митохондриального окисления может возникать при недостатке кислорода в организме. Развивается абсолютная недостаточность биологического окисления.

Может быть блокада дыхательных ферментов. Функция цитохромов и цитохромоксидазы нарушается при отравлении цианидами, угарным газом, сероводородом. Флавопротеиды инактивируются при гиповитаминозе В2. Поражение НАД-зависимых дегидрогеназ встречается при действии алкоголя, барбитуратов, при дефиците витамина В1, никотиновой кислоты.

Блокада ферментов приводит к нарушению процессов окисления даже при достаточном напряжении кислорода в артериальной крови. Развивается относительная недостаточность биологического окисления.

Микросомальное окисление происходит в печени.

В норме субстрат (R) при участии кислорода и цитохрома Р-450 окисляется: образуется окисленная форма - ROH.

О2

R ------------------------------------------- R - ОН

цитохром Р-450

 

Свободные радикалы (ROO, OH, RO )

При недостатке кислорода образуются свободные радикалы. Они повреждают мембраны клеток, вызывают развитие различных патологических процессов в организме (дистресс-синдром, воспаление, инфаркт миокарда, атеросклероз и другие процессы).

Смещанная форма гипоксии

Такая форма может возникать при острой кровопотере, геморрагическом шоке. В этом случае развивается циркуляторно-гемическая гипоксия.

 

 


<== предыдущая страница | следующая страница ==>
ПАТОФИЗИОЛОГИЯ БЕЛКОВОГО ОБМЕНА | ПАТОФИЗИОЛОГИЯ ВОСПАЛЕНИЯ

Дата добавления: 2014-10-10; просмотров: 1123; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.041 сек.