Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Пуассоновский (простейший) поток запросов

Читайте также:
  1. Анализ интенсивности и эффективности денежного потока
  2. Анализ сбалансированности денежных потоков.
  3. Баланс денежных потоков
  4. В ламинарном потоке сумма статического и динамического давления остается постоянной. Эта сумма соответствует статическому давлению в покоящейся жидкости.
  5. Временная оценка денежных потоков
  6. Выполнение потоков.
  7. Грузооборот и грузопереработка, характеристика грузопотоков и транспортно-технологических систем перегрузки грузов в портах.
  8. Грузопотоки. Эпюра грузопотоков
  9. Денежные потоки
  10. Денежные потоки

Стационарный ординарный поток без последействия называют простейшим.

Он задается набором вероятностей Pi(t) поступления i требований впромежутке длиной t.

 

Можно показать, что при этих предположениях формула для Pi(t) дается формулой Пуассона (Poisson):

.

Проанализируем основные характеристики пуассоновского потока. Рассмотрим отношение Pi(t)/Pi-1(t). При i ≤ λt вероятность растет, а при обратном соотношении – убывает. Графики функции распределения Пуассона в зависимости от величины λt для различных значений k приведены на рис. 1.

Рис. 1. Графики Пуассоновского распределения в зависимости от lt для различных k.

Наряду с распределением Pi(t) используют вероятности поступления не менее i требований в интервал t или не более i требований за время t:

Если рассмотреть закон распределения вероятностей промежутка между поступлением соседних требований τ, то можно показать, что

.

Дифференцируя, получаем плотность распределения вероятностей: .

Случайная величина с такой плотностью вероятностей называется экспоненциально - распределенной (с показательным распределением). Математическое ожидание экспоненциально распределенной случайной величины равно

,

а дисперсия и среднеквадратическое отклонение соответственно будут равны:

,

.

Определим математическое ожидание и дисперсию числа требований за промежуток t :

,

.

Одним из важных свойств пуассоновского потока является аддитивность.

Если образовать поток заявок как объединенный из нескольких пуассоновских потоков, то его суммарная интенсивность будет равна сумме интенсивностей каждого отдельного потока .

 

При разъединении пуассоновского потока на несколько потоков так, что каждое требование исходного потока с вероятностью pi (Spi =1) поступает на i-тоенаправление, поток i направления будет также пуассоновским с интенсивностью lp i.


<== предыдущая страница | следующая страница ==>
Лекция №7 | Нестационарный пуассоновский поток

Дата добавления: 2014-03-13; просмотров: 476; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.003 сек.