Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Реализация мониторов и передачи сообщений с помощью семафоров

Читайте также:
  1. He является препятствием рас­хождение в отношении ккауза» передачи и получения.
  2. Автоматизация работы с помощью макросов
  3. Алгоритм расчета теплопередачи через непроницаемые стенки
  4. Аппаратная реализация контроля буксовых узлов
  5. Аспекты проблемы анализа и их реализация в программных продуктах
  6. В соответствии с приведенными причинами выхода их строя цепных передач, можно сделать вывод о том, что срок службы передачи чаще всего ограничивается долговечностью цепи.
  7. Ввод с помощью датчика псевдослучайных чисел
  8. Вектор функции 2-х скалярных аргументов. Предел. Дифференцирование. Понятие поверхности. Гладкие поверхности и их параметризация с помощью вектор функции.
  9. Виды осуществления радиопередачи
  10. Виды сообщений при перевозке грузов.

Эквивалентность семафоров, мониторов и сообщений

Сообщения

 

Для прямой и непрямой адресации достаточно двух примитивов, чтобы описать передачу сообщений по линии связи – send и receive. В случае прямой адресации мы будем обозначать их так:

send(P, message) – послать сообщение message процессу P;

receive(Q, message) – получить сообщение message от процесса Q.

 

 

В случае непрямой адресации мы будем обозначать их так:

send(A, message) – послать сообщение message в почтовый ящик A;

receive(A, message) – получить сообщение message из почтового ящика A.

 

 

Примитивы send и receive уже имеют скрытый от наших глаз механизм взаимоисключения. Более того, в большинстве систем они уже имеют и скрытый механизм блокировки при чтении из пустого буфера и при записи в полностью заполненный буфер. Реализация решения задачи producer-consumer для таких примитивов становится неприлично тривиальной. Надо отметить, что, несмотря на простоту использования, передача сообщений в пределах одного компьютера происходит существенно медленнее, чем работа с семафорами и мониторами.

 

 

Мы рассмотрели три высокоуровневых механизма, использующихся для организации взаимодействия процессов. Можно показать, что в рамках одной вычислительной системы, когда процессы имеют возможность использовать разделяемую память, все они эквивалентны. Это означает, что любые два из предложенных механизмов могут быть реализованы на базе третьего, оставшегося механизма.

 

 

Рассмотрим сначала, как реализовать мониторы с помощью семафоров. Для этого нам нужно уметь реализовывать взаимоисключения при входе в монитор и условные переменные. Возьмем семафор mutex с начальным значением 1 для реализации взаимоисключения при входе в монитор и по одному семафору ci для каждой условной переменной. Кроме того, для каждой условной переменной заведем счетчик fi для индикации наличия ожидающих процессов. Когда процесс входит в монитор, компилятор будет генерировать вызов функции monitor_enter, которая выполняет операцию P над семафором mutex для данного монитора. При нормальном выходе из монитора (то есть при выходе без вызова операции signal для условной переменной) компилятор будет генерировать вызов функции monitor_exit, которая выполняет операцию V над этим семафором.

 

Для выполнения операции wait над условной переменной компилятор будет генерировать вызов функции wait, которая выполняет операцию V для семафора mutex, разрешая другим процессам входить в монитор, и выполняет операцию P над соответствующим семафором ci, блокируя вызвавший процесс. Для выполнения операции signal над условной переменной компилятор будет генерировать вызов функции signal_exit, которая выполняет операцию V над ассоциированным семафором ci (если есть процессы, ожидающие соответствующего события), и выход из монитора, минуя функцию monitor_exit.

Semaphore mutex = 1;

 

void monitor_enter(){

P(mutex);

}

 

void monitor_exit(){

V(mutex);

}

 

Semaphore ci = 0;

int fi = 0;

 

void wait(i){

fi=fi + 1;

V(mutex);

P(ci);

fi=fi - 1;

}

 

void signal_exit(i){

if (fi)V(ci);

else V(mutex);

}

 

Заметим, что при выполнении функции signal_exit, если кто-либо ожидал этого события, процесс покидает монитор без увеличения значения семафора mutex, не разрешая тем самым всем процессам, кроме разбуженного, войти в монитор. Это увеличение совершит разбуженный процесс, когда покинет монитор обычным способом или когда выполнит новую операцию wait над какой-либо условной переменной.

 

Рассмотрим теперь, как реализовать передачу сообщений, используя семафоры. Для простоты опишем реализацию только одной очереди сообщений. Выделим в разделяемой памяти достаточно большую область под хранение сообщений, там же будем записывать, сколько пустых и заполненных ячеек находится в буфере, хранить ссылки на списки процессов, ожидающих чтения и памяти. Взаимоисключение при работе с разделяемой памятью будем обеспечивать семафором mutex. Также заведем по одному семафору ci на взаимодействующий процесс, для того чтобы обеспечивать блокирование процесса при попытке чтения из пустого буфера или при попытке записи в переполненный буфер. Посмотрим, как такой механизм будет работать. Начнем с процесса, желающего получить сообщение.

 

Процесс-получатель с номером i прежде всего выполняет операцию P(mutex), получая в монопольное владение разделяемую память. После чего он проверяет, есть ли в буфере сообщения. Если нет, то он заносит себя в список процессов, ожидающих сообщения, выполняет V(mutex) и P(ci). Если сообщение в буфере есть, то он читает его, изменяет счетчики буфера и проверяет, есть ли процессы в списке процессов, жаждущих записи. Если таких процессов нет, то выполняется V(mutex), и процесс-получатель выходит из критической области. Если такой процесс есть (с номером j), то он удаляется из этого списка, выполняется V для его семафора cj, и мы выходим из критического района. Проснувшийся процесс начинает выполняться в критическом районе, так как mutex у нас имеет значение 0 и никто более не может попасть в критический район. При выходе из критического района именно разбуженный процесс произведет вызов V(mutex).

 

Как строится работа процесса-отправителя с номером i? Процесс, посылающий сообщение, тоже ждет, пока он не сможет иметь монополию на использование разделяемой памяти, выполнив операцию P(mutex). Далее он проверяет, есть ли место в буфере, и если да, то помещает сообщение в буфер, изменяет счетчики и смотрит, есть ли процессы, ожидающие сообщения. Если нет, выполняет V(mutex) и выходит из критической области, если есть, "будит" один из них (с номером j), вызывая V(cj), с одновременным удалением этого процесса из списка процессов, ожидающих сообщений, и выходит из критического региона без вызова V(mutex), предоставляя тем самым возможность разбуженному процессу прочитать сообщение. Если места в буфере нет, то процесс-отправитель заносит себя в очередь процессов, ожидающих возможности записи, и вызывает V(mutex) и P(ci).

 


<== предыдущая страница | следующая страница ==>
Мониторы | Реализация семафоров и мониторов с помощью очередей сообщений

Дата добавления: 2014-02-26; просмотров: 339; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.003 сек.