Главная страница Случайная лекция Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика Мы поможем в написании ваших работ! |
Скорость упругой волныДля нахождения скорости распространения волны в упругой среде рассмотрим простейший случай передачи деформации через упругий стержень. В течение короткого промежутка времени Dt ударом молотка сообщим стержню некоторый импульс (рис. 2). За это время точки торца стержня сместятся на некоторое расстояние Dl. Возникшая деформация будет перемещаться от точки к точке, и по стержню побежит волна сжатия. К концу промежутка Dt сжатие охватит участок стержня длиной l. Отношение представляет собой скорость распространения волны сжатия по стержню. К концу промежутка Dt все частицы участка стержня длины l будут двигаться со скоростью u = , вправо. Поскольку вначале этого промежутка частицы были неподвижны, то приращение импульса стержня будет равно ти, где т – масса участка l. Если площадь поперечного сечения стержня S, плотность материала r, то т = rSl. По второму закону Ньютона приращение импульса тела равно импульсу внешней силы FDt, поэтому: FDt =rSlu. (5) Сила F, сжимающая стержень, связана с деформацией Dl сжатого участка l законом Гука F=ЕS , (6) где Е — модуль Юнга. Исключив из уравнений (5) и (6) силу F и преобразовав, получим: = = u2. Отсюда скорость распространения волны сжатия в упругом стержне равна . (7) Для стали Е » 1,96×1011 , плотность r = 7,8×103 кг/м3, поэтому u = 5000 м/с. В случае деформации сдвига в упругой среде возникают поперечные волны, скорость которых . (8) где G – модуль сдвига.
Дата добавления: 2014-07-19; просмотров: 219; Нарушение авторских прав Мы поможем в написании ваших работ! |