Главная страница Случайная лекция Мы поможем в написании ваших работ! Порталы: БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика Мы поможем в написании ваших работ! |
МОДЕЛЬ РЕКОМБИНАЦИИ НА ОСНОВЕ РЕПАРАЦИИ ДВУЦЕПОЧЕЧНЫХ РАЗРЫВОВ ДНКВ последние годы получила развитие модель, предложенная еще в 1983 году Дж. Жостаком и др. для репарации двуцепочечных повреждений ДНК у дрожжей. Интерес к ней резко возрос после обнаружения специфических двуцепочечных разрывов в генах ARG4 и HIS4, возникающих только в мейозе и совпадающих с сайтами инициации рекомбинации. Разрывы сопровождались деградацией 5'-концевых цепей с каждой стороны разрыва, что приводило к образованию одноцепочечных 3'-хвостов длиной около 600 п.н. Модель представлена на рис. 8. В 1994 году две группы исследователей из США выделили из мейотических клеток дрожжей структуры, состоящие из двух гомологичных дуплексов, удерживаемых вместе двумя полухиазмами Холлидея. В реакции in vitro полухиазмы разрезаются с помощью резолвазы из E. coli на два дуплекса, либо кроссоверных, либо некроссоверных по внешним маркерам. Детали этого механизма применительно к условиям in vitro еще уточняются, однако он обнаружен пока только у дрожжей. Биологическое значение гомологичной рекомбинации огромно. Прежде всего, она вносит большой вклад в лежащую в основе эволюции генетическую изменчивость, позволяющую организмам постоянно приспосабливаться к среде обитания. Преимущества перекомбинаций генов настолько велики, что рекомбинационные системы появились у вирусов и бактерий, которые размножаются вегетативно. У эукариот они достигли большего разнообразия и сложности, особенно в соматических клетках. Эктопическая рекомбинация приводит к перестройкам хромосом, с которыми (прежде всего с дупликациями) связывают эволюцию генетического аппарата. Считается, что дупликации участков хромосом обеспечили материал для дивергенции нуклеотидных последовательностей, приводящей к возникновению новых генов. Однако биологическое значение гомологичной, и в том числе эктопической, рекомбинации нельзя свести к их роли в эволюции. Большую роль они играют и в разнообразных онтогенетических перестройках генетического материала, участвующих в регуляции работы генов. Например, конверсия гена (коррекция гетеродуплекса), которая в мейотических клетках является одним из этапов общего процесса кроссинговера, в соматических клетках эукариот и клетках бактерий может не сопровождаться кроссинговером по внешним генам и выступать как самостоятельное явление. Такая конверсия выполняет важные функции в онтогенезе бактерий, дрожжей, животных. Известно много примеров, когда определенный ген расположен в локусе, где он имеет собственный промотор и может функционировать, в то время как в других локусах находятся последовательности, в основном гомологичные этому гену, но заметно отличающиеся по нуклеотидному составу из-за накопившихся в них мутаций. Они лишены промотора и не могут выполнять функции генов. Эти "молчащие" последовательности могут вступать в синапсис с работающим геном и служить матрицей для его конверсии. Таким образом, работающий ген может менять свою нуклеотидную последовательность. Подобным способом клетки гомоталличных штаммов дрожжей меняют свой половой тип. У некоторых патогенных микроорганизмов этот же механизм, позволяющий их клеткам менять свои поверхностные антигены, участвует в процессах, описанных ниже. Так, многие патогенные бактерии (спирохета Borrelia bormsei, гонококки и др.) и простейшие (африканские трипаносомы), с одной стороны, и животные, в которых они паразитируют, - с другой, используют в борьбе друг против друга, в сущности, сходные приемы. Животные продуцируют в огромном ассортименте антитела, обеспечивающие им иммунитет, а патогенные микроорганизмы в ответ на это образуют на своей поверхности все новые и новые антигены, позволяющие им уходить от иммунного ответа хозяйского организма. В основе данных процессов лежат рекомбинационные перестройки в локусах, кодирующих антигены (или антитела). Рекомбинационные перестройки включают одни и выключают другие гены либо создают новые гены. В этих сложных процессах участвуют разные типы рекомбинации, но гомологичная и эктопическая рекомбинации (и в том числе конверсия гена) играют здесь не последнюю роль. Помимо описанных процессов, у бактерий и низших эукариот известны и другие рекомбинационные системы, участвующие в регуляции работы генов.
Дата добавления: 2014-11-08; просмотров: 472; Нарушение авторских прав Мы поможем в написании ваших работ! |