Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Коммуникационная среда MYRINET

Читайте также:
  1. Анализ известных реологических методов описания взаимодействия вибрирующих рабочих органов с порошковыми средами
  2. Внешняя и внутренняя среда организации
  3. Внешняя среда антикризисного управления
  4. Внешняя среда маркетинга
  5. Внешняя среда организации
  6. ВНЕШНЯЯ СРЕДА организации
  7. Внешняя среда предприятий, взаимоотношения и государственное регулирование
  8. Внешняя среда управления финансами
  9. ВНУТРЕННИЕ И ВНЕШНИЕ ПЕРЕМЕННЫЕ ОРГАНИЗАЦИИ. СРЕДА ПРЯМОГО И КОСВЕННОГО ВОЗДЕЙСТВИЯ.
  10. Внутренняя и внешняя среда в индустрии гостеприимства

Лечение эндометриоза.

Эндометриоз послеоперационных рубцов.

Чаще развивается после операций на гениталиях.

Клиника:

В коже находятся резко болезненные инфильтраты с синюшными глазками, из которых в циклическом режиме выделяется кровь. Встречаются случаи эндометриоза в рубцах после любых операций.

Диагностика:

Рубец плотный, подтверждение диагноза – биопсия.

 

Эндометриоз – это хирургическая патология. Максимальное лечение – это хирургическое иссечение очагов, вплоть до тотального иссечения органа.

Консервативное лечение:

Проводится у молодых нерожавших женщин. Обычно проводится комплексное лечение с учетом возраста.

 

Комплексная терапия включает:

Седативные препараты.

Витамины.

Антиоксиданты.

Препараты, поддерживающие функцию поджелудочной железы и печени.

Препараты, ингибирующие синтез простагландинов.

Физиотерапия:

магнитотерапия;

лазеротерапия;

электрофорез;

Бальнеотерапия

радоновые ванны;

жемчужные ванны;

Основной компонент лечения – это гормонотерапия, направленная на подавление системы эстрогенов или препятствующая их связыванию с рецепторами.

Существует шесть групп препаратов, в зависимости от точки их приложения:

Эстроген-гестагенные препараты (так называемые оральные контрацептивы). Используются монофазные высокодозированные препараты с высоким содержанием гормонов, в основном – гестагенов.

ригевидон;

нон-овлон;

Чистые гестагены:

17-ОПК;

дюфастон;

норколут;

депо-провера;

Антиэстрогены – тамоксифен;

Антипрогестины – дистренон;

Ингибиторы гонадотропинов (фолликулостимулирующего и лютеинезирующего гормонов):

данозол;

дановал;

Агонисты рилизинг-гормонов:

золадекс;

бусирилин;

Наибольший эффект оказывают:

Агонисты рилизинг-гормонов.

Антиэстрогены.

Антипрогестины, но все эти препараты имеют большую стоимость.

Показания к хирургическому лечению:

Эндометриоз тела матки 2-4 стадии.

Неэффективность консервативной терапии (консервативное лечение проводится не более 3-6 месяцев).

Сочетание аденомиоза с гиперплазией эндометрия и с опухолевыми образованиями яичников.

Противопоказания к гормональной терапии.

Объем хирургического вмешательства - зависит от возраста и степени распространения. При внутреннем эндометриозе – проводят экстирпацию матки. При малых формах – удаляют очаги гетеротопии (особенно у женщин в репродуктивном возрасте) с последующей гормональной терапией.

 

 

Сетевую технологию Myrinet представляет компания Myricom, которая впервые предложила свою коммуникационную технологию в 1994 году, а на сегодня имеет уже более 1000 инсталляций по всему миру. Технология Myrinet основана на использовании многопортовых коммутаторов при ограниченных несколькими метрами длинах связей узлов с портами коммутатора. Узлы в Myrinet соединяются друг с другом через коммутатор (до 128 портов). Максимальная длина линий связи варьируется в зависимости от конкретной реализации.

Как коммутируемая сеть, аналогичная по структуре сегментам Ethernet, соединенным с помощью коммутаторов, Myrinet может одновременно передавать несколько пакетов, каждый из которых идет со скоростью, близкой к 2 Гбит/с. В отличие от некоммутированных Ethernet и FDDI сетей, которые разделяют общую среду передачи, совокупная пропускная способность сети Myrinet возрастает с увеличением количества машин. На сегодня Myrinet чаще всего используют как локальную сеть (LAN) сравнительно небольшого размера, связывая вместе компьютеры внутри комнаты или здания. Из-за своей высокой скорости, малого времени задержки, прямой коммутации и умеренной стоимости Myrinet часто используется для объединения компьютеров в кластеры. Myrinet также используется как системная сеть (System Area Network, SAN), которая может объединять компьютеры в кластер внутри стойки с той же производительностью, но с более низкой стоимостью, чем Myrinet LAN. Пакеты Myrinet могут иметь любую длину. Таким образом, они могут включать в себя другие типы пакетов, в том числе IP-пакеты. Объединение вычислительных узлов с адаптерами Myrinet в сеть происходит с помощью коммутаторов, которые имеют сейчас 4, 8, 12 или 16 портов. В коммутаторах используется передача пакетов путем установления соединения на время передачи, для маршрутизации сообщений применяется алгоритм прокладки пути (wormhole, "червоточина"). Коммутаторы, как и сетевые адаптеры, построены на специализированных микропроцессорах LANai компании Myricom.

 

Таблица 5.2. Технология Myrinet
Производители оборудования Myricom
Показатели производительности Пиковая пропускная способность – 2 Гбит/с, полный дуплекс. Латентность – порядка 4 мксек.
Программная поддержка Драйверы для Linux (Alpha, x86, PowerPC, UltraSPARC), Windows NT (x86), Solaris (x86, UltraSPARC) и Tru64 UNIX. GM – интерфейс программирования на нижнем уровне. Пакеты HPVM (включает MPI-FM, реализацию MPI для Myrinet), BIP-MPI и др.
Комментарии Myrinet является открытым стандартом. Myricom предлагает широкий выбор сетевого оборудования по сравнительно невысоким ценам. На физическом уровне поддерживаются сетевые среды SAN (System Area Network), LAN (CL-2) и оптоволокно. Технология Myrinet предоставляет широкие возможности масштабирования сети и в настоящее время очень часто используется при построении высокопроизводительных кластеров

 

На физическом уровне линки Myrinet состоят из 9 проводников: 8 битов предназначены для передачи информации, интерпретируемой в зависимости от состояния девятого бита как байт данных или управляющий символ; при этом на каждом линке обеспечивается управление потоком и контроль ошибок. Среда Myrinet выгодно отличается от многих других сред передачи, в частности, SCI, простотой концепции и аппаратной реализации протоколов. Она содержит ограниченный набор средств управления трафиком, использующих приливно-отливный буфер, управляющие символы и таймерные интервалы. Myrinet является открытым стандартом, компания Myricom предлагает широкий выбор сетевого оборудования по сравнительно невысоким ценам. Технология Myrinet предоставляет широкие возможности масштабирования сети и часто используется при построении высокопроизводительных вычислительных кластеров.

Лекция №6. Способы организации высокопроизводительных процессоров. Ассоциативные процессоры. Конвейерные процессоры. Матричные процессоры. В данной лекции рассматриваются математические основы, способы организации и особенности проектирования ассоциативных, конвейерных и матричных процессоров.
Существующие в настоящее время алгоритмы прикладных задач, системное программное обеспечение и аппаратные средства преимущественно ориентированы на традиционную адресную обработку данных. Данные должны быть представлены в виде ограниченного количества форматов (например, массивы, списки, записи), должна быть явно создана структура связей между элементами данных посредством указателей на адреса элементов памяти, при обработке этих данных должна быть выполнена совокупность операций, обеспечивающих доступ к данным по указателям. Такой подход обуславливает громоздкость операционных систем и систем программирования, а также служит препятствием к созданию вычислительных средств с архитектурой, ориентированной на более эффективное использование параллелизма обработки данных. Ассоциативные процессоры Ассоциативный способ обработки данных позволяет преодолеть многие ограничения, присущие адресному доступу к памяти, за счет задания некоторого критерия отбора и проведения необходимых преобразований, только над теми данными, которые удовлетворяют этому критерию. Критерием отбора может быть совпадение с любым элементом данных, достаточным для выделения искомых данных из всех имеющихся. Поиск данных может происходить по фрагменту, имеющему большую или меньшую корреляцию с заданным элементом данных. Исследованы и в разной степени применяются несколько подходов, различающихся полнотой реализации модели ассоциативной обработки. Если реализуется только ассоциативная выборка данных с последующим поочередным использованием найденных данных, то говорят об ассоциативной памяти или памяти, адресуемой по содержимому. При достаточно полной реализации всех свойств ассоциативной обработки используется термин "ассоциативный процессор". Ассоциативные системы относятся к классу: один поток команд – множество потоков данных (SIMD = Single Instruction Multiple Data). Эти системы включают большое число операционных устройств, способных одновременно по командам управляющего устройства вести обработку нескольких потоков данных. В ассоциативных вычислительных системах информация на обработку поступает от ассоциативных запоминающих устройств (АЗУ), характеризующихся тем, что информация в них выбирается не по определенному адресу, а по ее содержанию.   Рис. 6.1. Схема ассоциативной системы   Конвейерныепроцессоры Процессоры современных компьютеров используют особенную технологию – конвейеры, которые позволяют обрабатывать более одной команды одновременно. Обработка команды может быть разделена на несколько основных этапов, назовем их микрокомандами. Выделим основные пять микрокоманд: · выборка команды; · расшифровка команды; · выборка необходимых операндов; · выполнение команды; · сохранение результатов. Все этапы команды задействуются только один раз и всегда в одном и том же порядке: одна за другой. Это, в частности, означает, что если первая микрокоманда выполнила свою работу и передала результаты второй, то для выполнения текущей команды она больше не понадобится, и, следовательно, может приступить к выполнению следующей команды. Выделим каждую команду в отдельную часть устройства и расположим их в порядке выполнения. В первый момент времени выполняется первая микрокоманда. Она завершает свою работу и начинает выполняться вторая микрокоманда, в то время как первая готова для выполнения следующей инструкции. Первая инструкция может считаться выполненной, когда завершат работу все пять микрокоманд. Такая технология обработки команд носит название конвейерной обработки. Каждая часть устройства называется ступенью конвейера, а общее число ступеней – длиной конвейера. Во многих вычислительных системах наряду с конвейером команд используются и конвейеры данных. Сочетание этих двух конвейеров позволяет достичь очень высокой производительности на определенных классах задач, особенно если используется несколько различных конвейерных процессоров, способных работать одновременно и независимо друг от друга. Одной из наиболее высокопроизводительных вычислительных конвейерных систем считается СRАY. В этой системе конвейерный принцип обработки используется в максимальной степени. Имеется и конвейер команд, и конвейер арифметических и логических операций. В системе широко применяется совмещенная обработка информации несколькими устройствами. Максимальная пиковая производительность процессора может составлять 12 GFLOPS. В настоящее время созданы однокристальные векторно-конвейерные процессоры, основными компонентами которых являются скалярный процессор и 8 идентичных векторных устройств, суммарная производительность которых составляет 64 GFLOPS. На их основе построена система SX-6 компании NEC. Матричныепроцессоры Наиболее распространенными из систем класса один поток команд – множество потоков данных (SIMD) являются матричные системы, которые лучше всего приспособлены для решения задач, характеризующихся параллелизмом независимых объектов или данных. Организация систем подобного типа, на первый взгляд, достаточно проста. Они имеют общее управляющее устройство, генерирующее поток команд и большое число процессорных элементов, работающих параллельно и обрабатывающих каждая свой поток данных. Таким образом, производительность системы оказывается равной сумме производительностей всех процессорных элементов. Однако на практике чтобы обеспечить достаточную эффективность системы при решении широкого круга задач, необходимо организовать связи между процессорными элементами с тем, чтобы наиболее полно загрузить их работой. Именно характер связей между процессорными элементами и определяет разные свойства системы. Одним из первых матричных процессоров был SОLОМОN (60-е годы).   Рис. 6.2. Структура матричной вычислительной системы SOLOMON   Система SOLOMON содержит 1024 процессорных элемента, которые соединены в виде матрицы: 32х32. Каждый процессорный элемент матрицы включает в себя процессор, обеспечивающий выполнение последовательных поразрядных арифметических и логических операций, а также оперативное ЗУ емкостью 16 Кбайт. Длина слова – переменная от 1 до 128 разрядов. Разрядность слов устанавливается программно. По каналам связи от устройства управления передаются команды и общие константы. В процессорном элементе используется так называемая многомодальная логика, которая позволяет каждому процессорному элементу выполнять или не выполнять общую операцию в зависимости от значений обрабатываемых данных. В каждый момент все активные процессорные элементы выполняют одну и ту же операцию над данными, хранящимися в собственной памяти и имеющими один и тот же адрес. Идея многомодальности заключается в том, что в каждом процессорном элементе имеется специальный регистр на 4 состояния – регистр моды. Мода (модальность) заносится в этот регистр от устройства управления. При выполнении последовательности команд модальность передается в коде операции и сравнивается с содержимым регистра моды. Если есть совпадения, то операция выполняется. В других случаях процессорный элемент не выполняет операцию, но может, в зависимости от кода, пересылать свои операнды соседнему процессорному элементу. Такой механизм позволяет выделить строку или столбец процессорных элементов, что очень полезно при операциях над матрицами. Взаимодействуют процессорные элементы с периферийным оборудованием через внешний процессор. Дальнейшим развитием матричных процессоров стала система ILLIАC-4, разработанная фирмой BURROUGHS. Первоначально система должна была включать в себя 256 процессорных элементов, разбитых на группы, каждый из которых должен управляться специальным процессором. Однако по различным причинам была создана система, содержащая одну группу процессорных элементов и управляющий процессор. Если в начале предполагалось достичь быстродействия 1 млрд. операций в секунду, то реальная система работала с быстродействием 200 млн. операций в секунду. Эта система в течение ряда лет считалась одной из самых высокопроизводительных в мире. В начале 80-х годов в СССР была создана система ПС-2000, которая также является матричной. Основой этой системы является мультипроцессор ПС-2000, состоящий из решающего поля и устройства управления мультипроцессором. Решающее поле строится из одного, двух, четырех или восьми устройств обработки, в каждом из которых 8 процессорных элементов. Мультипроцессор из 64 процессорных элементов обеспечивает быстродействие 200 млн. операций в секунду на коротких операциях.    
Лекция №7. Способы организации высокопроизводительных процессоров. Клеточные и ДНК-процессоры. Коммуникационные процессоры. . В данной лекции рассматриваются математические основы, способы организации и особенности проектирования клеточных, ДНК и коммуникационных процессоров. Клеточные и ДНК-процессоры. В настоящее время в поисках реальной альтернативы полупроводниковым технологиям создания новых вычислительных систем ученые обращают все большее внимание на биотехнологии, или биокомпьютинг, который представляет собой гибрид информационных, молекулярных технологий, а также биохимии. Биокомпьютинг позволяет решать сложные вычислительные задачи, используя методы, принятые в биохимии и молекулярной биологии, организуя вычисления при помощи живых тканей, клеток, вирусов и биомолекул. Наибольшее распространение получил подход, где в качестве основного элемента (процессора) используются молекулы дезоксирибонуклеиновой кислоты. Центральное место в этом подходе занимает так называемый ДНК-процессор. Кроме ДНК, в качестве биопроцессора могут использоваться также белковые молекулы и биологические мембраны.
ДНК-процессоры Так же, как и любой другой процессор, ДНК-процессор характеризуется структурой и набором команд. В нашем случае структура процессора – это структура молекулы ДНК. А набор команд – это перечень биохимических операций с молекулами. Принцип устройства компьютерной ДНК-памяти основан на последовательном соединении четырех нуклеотидов (основных кирпичиков ДНК-цепи). Три нуклеотида, соединяясь в любой последовательности, образуют элементарную ячейку памяти – кодон, совокупность которых формирует затем цепь ДНК. Основная трудность в разработке ДНК-компьютеров связана с проведением избирательных однокодонных реакций (взаимодействий) внутри цепи ДНК. Однако прогресс есть уже и в этом направлении. Существует экспериментальное оборудование, позволяющее работать с одним из 1020 кодонов или молекул ДНК. Другой проблемой является самосборка ДНК, приводящая к потере информации. Ее преодолевают введением в клетку специальных ингибиторов – веществ, предотвращающих химическую реакцию самосшивки. Использование молекул ДНК для организации вычислений – это не слишком новая идея. Теоретическое обоснование подобной возможности было сделано еще в 50-х годах прошлого века (Р.П. Фейманом). В деталях эта теория была проработана в 70-х годах Ч. Бенеттом и в 80-х М. Конрадом. Первый компьютер на базе ДНК был создан еще в 1994 г. американским ученым Леонардом Адлеманом. Он смешал в пробирке молекулу ДНК, в которой были закодированы исходные данные, и специальным образом подобранные ферменты. В результате химической реакции структура ДНК изменилась таким образом, что в ней в закодированном виде был представлен ответ задачи. Поскольку вычисления проводились в ходе химической реакции с участием ферментов, на них было затрачено очень мало времени. Вслед за работой Адлемана последовали другие. Ллойд Смит из Университета Висконсин решил с помощью ДНК задачу доставки четырех сортов пиццы по четырем адресам, которая подразумевала 16 вариантов ответа. Ученые из Принстонского университета решили комбинаторную шахматную задачу: при помощи РНК нашли правильный ход шахматного коня на доске из девяти клеток (всего их 512 вариантов). Ричард Липтон из Принстона первым показал, как, используя ДНК, кодировать двоичные числа и решать проблему удовлетворения логического выражения. Суть ее в том, что, имея некоторое логическое выражение, включающее n логических переменных, нужно найти все комбинации значений переменных, делающих выражение истинным. Задачу можно решить только перебором 2n комбинаций. Все эти комбинации легко закодировать с помощью ДНК, а дальше действовать по методике Адлемана. Липтон предложил также способ взлома шифра DES (американский криптографический), трактуемого как своеобразное логическое выражение. Первую модель биокомпьютера, правда, в виде механизма из пластмассы, в 1999 г. создал Ихуд Шапиро из Вейцмановского института естественных наук. Она имитировала работу "молекулярной машины" в живой клетке, собирающей белковые молекулы по информации с ДНК, используя РНК в качестве посредника между ДНК и белком. А в 2001 г. Шапиро удалось реализовать вычислительное устройство на основе ДНК, которое может работать почти без вмешательства человека. Система имитирует машину Тьюринга — одну из фундаментальных концепций вычислительной техники. Машина Тьюринга шаг за шагом считывает данные и в зависимости от их значений принимает решения о дальнейших действиях. Теоретически она может решить любую вычислительную задачу. По своей природе молекулы ДНК работают аналогичным образом, распадаясь и рекомбинируясь в соответствии с информацией, закодированной в цепочках химических соединений. Разработанная в Вейцмановском институте установка кодирует входные данные и программы в состоящих из двух цепей молекулах ДНК и смешивает их с двумя ферментами. Молекулы фермента выполняли роль аппаратного, а молекулы ДНК – программного обеспечения. Один фермент расщепляет молекулу ДНК с входными данными на отрезки разной длины в зависимости от содержащегося в ней кода. А другой рекомбинирует эти отрезки в соответствии с их кодом и кодом молекулы ДНК с программой. Процесс продолжается вдоль входной цепи, и, когда доходит до конца, получается выходная молекула, соответствующая конечному состоянию системы. Этот механизм может использоваться для решения самых разных задач. Хотя на уровне отдельных молекул обработка ДНК происходит медленно, со скоростью от 500 до 1000 бит/с, что во много миллионов раз медленнее современных кремниевых процессоров, по своей природе она допускает массовый параллелизм. По оценкам Шапиро и его коллег, в одной пробирке может одновременно происходить триллион процессов, так что при потребляемой мощности в единицы нановатт может выполняться миллиард операций в секунду. В конце февраля 2002 г. появилось сообщение, что фирма Olympus Optical претендует на первенство в создании коммерческой версии ДНК-компьютера, предназначенного для генетического анализа. Машина была создана в сотрудничестве с доцентом Токийского университета Акирой Тояма. Компьютер, построенный Olympus Optical, имеет молекулярную и электронную составляющие. Первая осуществляет химические реакции между молекулами ДНК, обеспечивает поиск и выделение результата вычислений. Вторая – обрабатывает информацию и анализирует полученные результаты. Возможностями биокомпьютеров заинтересовались и военные. Американское агентство по исследованиям в области обороны DARPA выполняет проект, получивший название Bio-Comp (Biological Computations, биологические вычисления). Его цель – создание мощных вычислительных систем на основе ДНК. Пока до практического применения компьютеров на базе ДНК еще очень далеко. Однако в будущем их смогут использовать не только для вычислений, но и как своеобразные нанофабрики лекарств. Поместив подобное "устройство" в клетку, врачи смогут влиять на ее состояние, исцеляя человека от самых опасных недугов. Клеточные компьютеры представляют собой самоорганизующиеся колонии различных "умных" микроорганизмов, в геном которых удалось включить некую логическую схему, которая могла бы активизироваться в присутствии определенного вещества. Для этой цели идеально подошли бы бактерии, стакан с которыми и представлял бы собой компьютер. Такие компьютеры очень дешевы в производстве. Им не нужна стерильная атмосфера, как при производстве полупроводников. Главное свойство такого компьютера состоит в том, что каждая его клетка представляет собой миниатюрную химическую лабораторию. Если биоорганизм запрограммирован, то он просто производит нужные вещества. Достаточно вырастить одну клетку, обладающую заданными качествами, и можно легко и быстро вырастить тысячи клеток с такой же программой. Основная проблема, с которой сталкиваются создатели клеточных биокомпьютеров, – организация всех клеток в единую работающую систему. На сегодня практические достижения в области клеточных компьютеров напоминают достижения 20-х годов в области ламповых и полупроводниковых компьютеров. Сейчас в Лаборатории искусственного интеллекта Массачусетского технологического университета создана клетка, способная хранить на генетическом уровне 1 бит информации. Также разрабатываются технологии, позволяющие единичной бактерии отыскивать своих соседей, образовывать с ними упорядоченную структуру и осуществлять массив параллельных операций. В 2001 г. американские ученые создали трансгенные микроорганизмы (т. е. микроорганизмы с искусственно измененными генами), клетки которых могут выполнять логические операции И и ИЛИ. Специалисты лаборатории Оук-Ридж, штат Теннесси, использовали способность генов синтезировать тот или иной белок под воздействием определенной группы химических раздражителей. Ученые изменили генетический код бактерий Pseudomonas putida таким образом, что их клетки обрели способность выполнять простые логические операции. Например, при выполнении операции И в клетку подаются два вещества (по сути – входные операнды), под влиянием которых ген вырабатывает определенный белок. Теперь ученые пытаются создать на базе этих клеток более сложные логические элементы, а также подумывают о возможности создания клетки, выполняющей параллельно несколько логических операций. Потенциал биокомпьютеров очень велик. К достоинствам, выгодно отличающим их от компьютеров, основанных на кремниевых технологиях, относятся: · более простая технология изготовления, не требующая для своей реализации столь жестких условий, как при производстве полупроводников; · использование не бинарного, а тернарного кода (информация кодируется тройками нуклеотидов), что позволит за меньшее количество шагов перебрать большее число вариантов при анализе сложных систем; · потенциально исключительно высокая производительность, которая может составлять до 1014 операций в секунду за счет одновременного вступления в реакцию триллионов молекул ДНК; · возможность хранить данные с плотностью, в триллионы раз превышающей показатели оптических дисков; · исключительно низкое энергопотребление. Однако, наряду с очевидными достоинствами, биокомпьютеры имеют и существенные недостатки, такие как: · сложность со считыванием результатов – современные способы определения кодирующей последовательности несовершенны, сложны, трудоемки и дороги; · низкая точность вычислений, связанная с возникновением мутаций, прилипанием молекул к стенкам сосудов и т.д.; · невозможность длительного хранения результатов вычислений в связи с распадом ДНК в течение времени. Хотя до практического использования биокомпьютеров еще очень далеко, и они вряд ли будут рассчитаны на широкие массы пользователей, предполагается, что они найдут достойное применение в медицине и фармакологии, а также с их помощью станет возможным объединение информационных и биотехнологий. Коммуникационные процессоры Коммуникационные процессоры – это микрочипы, представляющие собой нечто среднее между жесткими специализированными интегральными микросхемами и гибкими процессорами общего назначения. Коммуникационные процессоры программируются, как и привычные для нас ПК-процессоры, но построены с учетом сетевых задач, оптимизированы для сетевой работы и на их основе производители – как процессоров, так и оборудования – пишут программное обеспечение для специфических приложений. Коммуникационный процессор имеет собственную память и оснащен высокоскоростными внешними каналами для соединения с другими процессорными узлами. Его присутствие позволяет в значительной мере освободить вычислительный процессор от нагрузки, связанной с передачей сообщений между процессорными узлами. Скоростной коммуникационный процессор с RISC-ядром позволяет управлять обменом данными по нескольким независимым каналам, поддерживать практически все распространенные протоколы обмена, гибко и эффективно распределять и обрабатывать последовательные потоки данных с временным разделением каналов. Сама идея создания процессоров, предназначенных для оптимизации сетевой работы и при этом достаточно универсальных для программной модификации, родилась в связи с необходимостью устранить различия в подходах к созданию локальных сетей (различные подходы к архитектуре сети, классификации потоков и т.д.). Несомненно, истинной причиной бума сетевых процессоров стало ускорение темпов развития рынка. Когда рынок движется на "Internet-скорости", поставщики оборудования уже не могут тратить по два года на разработку специализированных микросхем для реализации конкретных сетевых функций. Эти два года (и вложенные деньги) будут потрачены зря, если рынок за это время уйдет в другом направлении. Выход один – разрабатывать процессоры, которые поставщики оборудования могут внедрить и выпустить в новом продукте в течение нескольких месяцев. Бум сетевых процессоров, окончательно оформившийся в середине 1999 г., не был кратким, и в последующие годы индустрия развивалась крайне бурно. По прогнозам одних аналитиков, очень скоро специальные микросхемы будут вытеснены стандартными сетевыми процессорами. Другие аналитики считают, что у сетевых процессоров, без сомнения, есть будущее, но они смогут преобладать только на некоторых сегментах рынка, где необходимы укороченные циклы разработки, быстрота и гибкость. Предполагается, что на этом рынке не будет преобладать какая-либо одна компания, как, например, Intel на рынке ПК. Однако считается, что Intel останется одним из ключевых игроков, разделив $2,9 млрд. с IBM, Motorola и дюжиной других компаний. Новая серия коммуникационных процессоров INTEL IXP4xx построена на базе распределенной архитектуры XScale и включает мощные мультимедийные возможности, а также развитые сетевые интерфейсы Ethernet. Сочетание высокой производительности и низкого энергопотребления позволяет эффективно применять коммуникационные процессоры INTEL не только в классических сетевых приложениях, но и для построения Internet-ориентированных встраиваемых систем промышленного назначения. Эффективность работы промышленных предприятий сегодня напрямую зависит от гибкости применяемых систем автоматизированного управления. Крупные производственные установки требуют использования нескольких децентрализованных систем управления, связанных друг с другом мощной информационной сетью, способной работать в сложных промышленных условиях. Зачастую эти средства промышленной коммуникации призваны обеспечить возможность гибкого управления, программирования и контроля работы распределенных систем управления из удаленных диспетчерских пунктов. Достижение этих целей возможно с помощью коммуникационных процессоров, предназначенных для подключения персональных компьютеров к промышленным информационным сетям. Дополнительные возможности, обеспечиваемые коммуникационными процессорами, должны быть интересны, прежде всего, тем пользователям, которым необходимо осуществлять сложные транзакции или наладить прямую голосовую и видеосвязь в рамках сетевой инфраструктуры.

 


<== предыдущая страница | следующая страница ==>
Дополнительные методы исследования | Реформы образования Александра 2

Дата добавления: 2014-03-01; просмотров: 974; Нарушение авторских прав


Поделиться с ДРУЗЬЯМИ:


Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.004 сек.