Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Проецирование точки

Читайте также:
  1. Внешний уровень. Это представление БД с точки зрения конечных пользователей.
  2. Движение точки по окружности
  3. Движения самой точки.
  4. Динамика материальной точки
  5. ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ И ТЕЛА, ДВИЖУЩИХСЯ ПОСТУПАТЕЛЬНО
  6. Измерение температуры.Реперные точки. Термометры расширения.
  7. Кинематика точки
  8. КИНЕМАТИКА ТОЧКИ
  9. Комплексный двухкартинный чертеж точки.
  10. Конфликтные точки

 

Точка, как математическое понятие, не имеет размеров. Очевидно, если объект проецирования является нульмерным объектом, то говорить о его проецировании бессмысленно.

В геометрии под точкой целесообразно принимать физический объект, имеющий линейные измерения. Условно за точку можно принять шарик с бесконечно малым радиусом. При такой трактовке понятия точки можно говорить о ее проекциях.

При построении ортогональных проекций точки следует руководствоваться первым инвариантным свойством ортогонального проецирования: ортогональная проекция точки есть точка.

 


Положение точки в пространстве определяется тремя координатами: X, Y, Z, показывающие величины расстояний, на которые точка удалена от плоскостей проекций. Чтобы определить эти расстояния, достаточно определить точки встречи этих прямых с плоскостями проекций и измерить соответству-

 

Рис. 1.9 Рис. 1.10

 

ющие величины, которые укажут соответственно значения абсциссы X , ординаты Y и аппликаты Z точки (рис. 1.10).

Проекцией точки является основание перпендикуляра, опущенного из точки на соответствующую плоскость проекций. Горизонтальной проекцией точки а называют прямоугольную проекцию точки на горизонтальной плоскости проекций, фронтальной проекцией а / – соответственно на фронтальной плоскости проекций и профильной а// на профильной плоскости проекций.

Прямые Аа, Аa / и Аa // называются проецирующими прямыми. При этом прямую Аа, проецирующую точку А на горизонтальную плоскость проекций, называют горизонтально- проецирующей прямой, Аa / и Аa // - соответственно: фронтально и профильно-проецирущими прямыми.

Две проецирующие прямые, проходящие через точку А определяют плоскость, которую принято называть проецирующей.

При преобразовании пространственного макета, фронтальная проекция точки А – а / остается на месте, как принадлежащая плоскости, которая не меняет своего положения при рассматриваемом преобразовании. Горизонтальная проекция – а вместе с горизонтальной плоскостью проекции повернется по направлению движения часовой стрелки и расположится на одном перпендикуляре к оси Х с фронтальной проекцией. Профильная проекция - a // будет вращаться вместе с профильной плоскостью и к концу преобразования займет положение, указанное на рисунке 1.10. При этом - a // будет принадлежать перпендикуляру к оси Z , проведенному из точки а / и будет удалена от оси Z на такое же расстояние, на какое горизонтальная проекция а удалена от оси Х. Поэтому связь между горизонтально и профильной проекциями точки может быть установлена с помощью двух ортогональных отрезков ааy и аy a // и сопрягающей их дуги окружности с центром в точке пересечения осей ( О – начало координат). Отмеченной связью пользуются для нахождения недостающей проекции ( при двух заданных). Положение профильной (горизонтальной) проекции по заданным горизонтальной (профильной) и фронтальной проекциям может быть найдено с помощью прямой, проведенной под углом 450 из начала координат к оси Y ( эту биссектрису называют прямой k – постоянной Монжа). Первый из указанных способов предпочтителен, как более точный.

Рис. 1.11 Рис.1.12

 

Из этого следует:

1. Точка в пространстве удалена:

от горизонтальной плоскости H на величину заданной координаты Z,

от фронтальной плоскости V на величину заданной координаты Y,

от профильной плоскости W на величину координаты .X.

2. Две проекции любой точки принадлежат одному перпендикуляру (одной линии связи):

горизонтальная и фронтальная – перпендикуляру к оси X,

горизонтальная и профильная – перпендикуляру к оси Y,

фронтальная и профильная – перпендикуляру к оси Z.

3. Положение точки в пространстве вполне определяется положением ее двух ортогональных проекций. Из этого следует – по двум любым заданным ортогональным проекциям точки всегда можно построить недостающую ее третью проекцию .

Если точка имеет три определенные координаты, то такую точку называют точкой общего положения. Если у точки одна или две координаты имеют нулевое значение, то такую точку называют точкой частного положения.

На рисунке 1.11 дан пространственный чертеж точек частного положения, на рисунке 1.12 – комплексных чертеж (эпюр) этих точек. Точка А принадлежит фронтальной плоскости проекций, точка В – горизонтальной плоскости проекций, точка С – профильной плоскости проекций и точка D – оси абсцисс (Х ).

 


<== предыдущая страница | следующая страница ==>
Прямоугольное (ортогональное проецирование) проецирование | Проецирование прямых общего положения

Дата добавления: 2014-04-16; просмотров: 601; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.003 сек.