Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Дифференциальные уравнения первого порядка

Читайте также:
  1. Алгоритм расчета коэффициента теплоотдачипо критериальным уравнениям
  2. Влияние температуры на химическое равновесие. Уравнения изобары и изохоры химической реакции
  3. Возможные проблемы при вскармливании детей первого года жизни
  4. Вопрос 9.3. Анализ влияния факторов первого уровня на прибыль от реализации продукции.
  5. Выбор порядка тригонометрического полинома
  6. Государственная программа «Обеспечение общественного порядка и противодействие преступности»
  7. Дифференциальные зубчатые механизмы
  8. Дифференциальные уравнения
  9. Дифференциальные уравнения конвективного теплообмена

Пример 2.

Пример 1.

Дискретная математика.

Математическая логика - это современный вид формальной логики. Логика – это наука правильно рассуждать, имея какие-то утверждения, истинность которых проверена, например, на опыте. С помощью утверждений можно придти к новому утверждению, которое также может оказаться истинным.

Исходное утверждение называется посылкой, результирующее утверждение – заключением.

П1: Все люди смертны.

П2. Сократ – человек.

З: Сократ смертен.

 

П1: Все граждане России имеют право на образование.

П2: Иванов – гражданин России.

З: Иванов имеет право на образование.

 

Оба эти вывода имеют одну и ту же форму:

Все А есть В;

С есть А;

Следовательно, С есть В.

 

В этих рассуждениях нам не интересна истинность или ложность отдельных посылок. Нам важно знать вытекает ли истинность заключения из истинности посылок.

 

Таким образом, основная задача логики – это формализация правильных способов рассуждения. Если при этом применяется математический аппарат, то такую логику можно назвать математической.

Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения входят не только сами функции, но и их производные. Если производные, входящие в уравнение, берутся только по одной переменной, то дифференциальное уравнение называется обыкновенным. Если в уравнении встречаются производные по нескольким переменным, то уравнение называется уравнением в частных производных. Мы будем рассматривать лишь обыкновенные дифференциальные уравнения.

Начнем с дифференциальных уравненийпервого порядка. Это уравнения, в которые входит лишь первая производная неизвестной функции. Это уравнение может быть записано в виде

F(x,y,y¢) = 0. (1)

Здесь x ‑ независимая переменная, y ‑ её неизвестная функция, ‑ производная функции y, F ‑ заданная функция трех переменных. Функция F может быть задана не для всех значений её аргументов, поэтому можно говорить об области B определения функции F координатного пространства, то есть о множестве точек координатного пространства трех переменных x,y,y¢.

Приведем примеры дифференциальных уравнений первого порядка:

y¢ – x4 = 0; xsiny¢ – lny = 0; xcosy + (y¢ – y2)sinx = 0.

Решением уравнения (1) называется такая функция y = j(x), определенная на некотором промежутке (x1, x2), что при подстановке её вместо y в уравнение (1) полу­чается верное равенство на всем промежутке (x1, x2). Очевидно, что подстановка y = j(x) возможна только тогда, когда функция j(x) на промежутке (x1, x2) имеет первую производную. Необходимо также, чтобы при любом значении переменной x из промежутка (x1, x2) точка с координатами x, y, y¢ принадлежала множеству B, на котором определена функция F. Совокупность всех решенийдифференциального уравнения называется егообщим решением.

В некоторых случаях уравнение (1) определяет переменную y¢ как функцию независимых переменных x и y:

y¢ = f(x,y). (2)

Тогда дифференциальное уравнение (2) равносильно дифференциальному уравнению (1) и называетсяразрешенным относительно производной.

Рассмотрим свойства решений уравнения (2). Введем в рассмотрение координатную плоскость XY переменных x и y. Мы будем рассматривать лишь такие уравнения, у которых область определения правой части есть некоторая открытая область G в плоскости XY (область называется открытой, если каждая точка входит в неё вместе с некоторой своей окрестностью). Пусть функция y = j(x) – решение уравнения (2). Тогда график этой функции называется интегральной линией или интегральной кривой. Эта кривая лежит в области G. Если точка (x0, y0) принадлежит области G, то интегральная кривая проходит через эту точку. Интегральная кривая в рассматриваемой точке имеет касательную, угловой коэффициент которой равен

j¢(x0) = f(x0, j(x0))

Таким образом, в каждой точке области G можно установить положение касательной к графику решения уравнения (2), проходящему через эту точку.

Можно себе представить, что в каждой точке области G построен короткий отрезок касательной к интегральной кривой, проходящей через эту точку. Тогда получится чертеж, который называется полем направлений, задаваемым уравнением (2). Пример приведен на рисунке 1. Таким образом, каждое дифференциальное уравнение вида (2) задает на плоскости XY в области G поле направлений. Интегральные линии этого уравнения касаются направления, задаваемого полем в этой точке.

§2. Дифференциальные уравнения с разделяющимися
переменными

Если в уравнении

y¢ = f(x,y). (1)

f(x,y) = f1(x)f2(y), то такое уравнение называется уравнением с разделяющимися переменными. Его общий вид:

.

Предполагая, что f2(y) ¹ 0, преобразуем последнее уравнение:

.

В обеих частях полученного уравнения стоят дифференциалы некоторых функций аргумента х. Из равенства дифференциалов этих функций следует, что сами функции отличаются одна от другой на константу.

Применим изложенный метод к задаче об эффективности рекламы.

Пусть торговой фирмой реализуется некоторая продукция, о которой в момент времени t = 0 из рекламы получили информацию x0 человек из общего числа N потенциальных покупателей. Далее эта информация распространяется посредством общения людей, и в момент времени t > 0 число знающих о продукции людей равно x(t). Сделаем предположение, что скорость роста числа знающих о продукции пропорциональна как числу осведомлённых в данный момент покупателей, так и числу неосведомленных покупателей. Это приводит к дифференциальному уравнению

.

Здесь k – положительный коэффициент пропорциональности. Из уравнения получаем равенство дифференциалов двух функций аргумента t:

.

Интегрируя левую и правую части, находим общее решение дифферен­циального уравнения:

.

В общее решение входит неопределенная константа С. Полагая NC = D, получим равенство:

x/(N – x) = eNkt + D,

из которого определим функцию x(t):

.

Здесь E = e–D. Такого вида функция называется логистической, а её график – логистической кривой.

Если теперь учесть, что х(0) = х0 и положить х0 = N/a, где a > 0, то можно найти значение константы Е. Логистичеcкая функция примет вид:

.

На рисунке 2 приведены примеры логистических кривых, полученных при различных значе­ниях a. Здесь величина N условно принималась за 1, а величина k бралась равной 0,5.

С помощью логисти­ческой функции описыва­ются многие экономические, социаль­ные, технологичес­кие и биологические про­цессы, например, постоян­ный рост продаж, распростра­нение слухов, распространение техни­ческих новшеств, рост популяции определенного вида животных и др.


<== предыдущая страница | следующая страница ==>
ЧИСЛОВЫЕ РЯДЫ | Линейные дифференциальные уравнения

Дата добавления: 2014-02-28; просмотров: 703; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.005 сек.