Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Погрешности титрования

Читайте также:
  1. Виды погрешности обработки
  2. Вывод формулы для расчета погрешности косвенных измерений
  3. Индикаторные погрешности
  4. Источники питания и погрешности при проведении электрофореза.
  5. Классификация методов осадительного титрования
  6. Кривые комплексонометрического титрования
  7. Кривые титрования
  8. Кривые титрования
  9. Кривые титрования
  10. Методы комплексонометрического титрования

Методика титриметрического анализа многостадийна, по­грешности могут возникать на любой стадии её проведения: при из­мерении массы навески, объёма приготовленного раствора или алик­воты, при проведении титрования, обнаружении конечной точки тит­рования. В зависимости от причины возникновения погрешности в титриметрических методах анализа, как и погрешности вообще, могут быть:

К появлению систематических погрешностей в титриметрических методах анализа может приводить:

· использование неверно градуированной посуды;

· неправильная техника титрования (слишком быстрое добавление титранта);

· неточное считывание объёма титранта, израсходованного для титрования;

несовпадение точки эквивалентности и рТ индикатора.

Погрешности, обусловленные несовпадением точки эквивалентности и рТ индикатора, называются индикаторными.

Индикаторные погрешности в кислотно-основном титровании удобно разделить на 4 вида:

Водородная индикаторная погрешность может возникнуть при недотитровании сильной кислоты (в таком случае погрешность отрицательная) либо когда сильная кислота используется в качестве титранта и добавлена в избытке (положительная погрешность).

Если концентрации титруемого вещества и титранта одинаковы, то Vконечн = 2V0, тогда

Гидроксидная погрешность может возникнуть при недотитровании сильного основания (отрицательная погрешность) либо в том случае, когда сильное основание используется в качестве титранта и добавлено в избытке (положительная погрешность).

Кислотная и основная индикаторные погрешности могут быть только отрицательными (если, конечно, исключить гипотетический случай использования слабой кислоты или основания в качестве титранта).

Величина кислотной погрешности представляет собой молярную долю неоттитрованной кислоты.

Если , то

Формула для расчёта основной погрешности выводится аналогичным образом и выглядит следующим образом

или в упрощённом виде

Пример 13.1. Рассчитать систематическую индикаторную погрешность титрования 0,1 М HCl и 0,1 М HCOOH при использовании в качестве титранта 0,1 М NaOH и индикатора метилового оранжевого (рТ = 4).

В случае HCl титрование заканчивается при рН меньшем (4), чем рН в точке эквивалентности (7), поэтому имеет место водородная индикаторная погрешность. Поскольку в конечной точке титрования определяемое вещество будет недотитровано, величина систематической индикаторной погрешности будет отрицательной

При титровании HCOOH в конечной точке титрования будет оставаться неоттитрованная слабая кислота, поэтому в данном случае будет кислотная индикаторная погрешность.

Совершенно очевидно, что метиловый оранжевый не может быть использован для обнаружения конечной точки титрования раствора HCOOH раствором NaOH.

Даже в том случае, если систематическая индикаторная погрешность равна 0 (pHэкв = рТ), всё равно будет иметься случайная погрешность визуального обнаружения конечной точки титрования с помощью индикатора. Вследствие физиологических особенностей нашего зрения рТ индикатора можно определить лишь с неопределённостью примерно ± 0,4 ед. рН. Величина случайной индикаторной погрешности зависит от крутизны скачка титрования - чем она больше, тем случайная погрешность меньше. Индекс крутизны скачка титрования рассчитывается следующим образом:

При титровании слабых кислот (оснований) крутизна скачка титрования меньше, следовательно, случайная индикаторная погрешность больше, чем при титровании сильных кислот (оснований) (рис 13.5). Для 0,1 М сильных кислот и оснований величина случайной индикаторной погрешности составляет ±2×10-7. По мере уменьшения силы кислоты (основания) и концентрации случайная погрешность увеличивается.

Рис. 13.5. Влияние крутизны скачка титрования на случайную индикаторную погрешность: 1 – 0,1 М HCOOH; 2 – 0,1 М HCl

В виде полосы показана область неопределённости обнаружения конечной точки титрования для индикатора, имеющего рТ 8

13.6. Некоторые случаи практического применения кислотно-основного титрования в водных растворах

Анализ смеси карбоната и гидроксида, карбоната и гидрокарбоната щелочного металла с применением двух индикаторов

При титровании смеси гидроксида и карбоната щелочного металла, например, NaOH и Na2CO3 и обнаружении конечной точки титрования с помощью фенолфталеина протекают реакции:

NaOH + HCl ® NaCl + H2O

Na2CO3 + HCl ® NaHCO3 + NaCl,

При обнаружении конечной точки титрования с помощью метилового оранжевого реакция взаимодействия гидроксида натрия с кислотой протекает точно также, а карбонат натрия титруется до угольной кислоты. Разность между объёмами раствора титранта, израсходованного для титрования смеси в присутствии метилового оранжевого и фенолфталеина, будет соответствовать протеканию реакции:

NaHCO3 + HCl ® H2CO3 + NaCl

Фактор эквивалентности NaHCO3 в данной реакции равен 1. Если принять, что NaHCO3 в исходной смеси не было, то n(NaHCO3) = n0(Na2CO3) и массу карбоната натрия можно рассчитать следующим образом

m(Na2CO3) = C(HCl)×(VМО – VФ)×10-3×M(Na2CO3)

Для взаимодействия с NaOH, находящимся в анализируемой пробе, будет расходоваться объём стандартного раствора титранта равный VФ – (VМО – VФ) = 2VФ - VМО, поэтому массу NaOH рассчитывают по следующей формуле

m(NaOH) = C(HCl)×(2VФ – VМО)×10-3×M(NaOH)

Если на титрование смеси щелочи и карбоната с фенолфталеином и метиловым оранжевым затрачивается практически одинаковый объём стандартного раствора титранта, то содержание карбоната в смеси очень мало. Напротив, если объёмы раствора титранта, затраченные для титрования, значительно отличаются, то в анализируемой смеси содержится много карбоната

Анализ смеси гидрокарбоната и карбоната щелочного металла титрованием её раствором сильной кислоты в присутствии двух индикаторов основан на том же принципе, что и анализ смеси гидроксида и карбоната. При титровании смеси с фенолфталеином с титрантом взаимодействует лишь карбонат

Na2CO3 + HCl ® NaHCO3 + NaCl

С метиловым оранжевым титруются и карбонат и гидрокарбонат. По объёму раствора HCl, затраченному для титрования с фенолфталеином, можно рассчитать содержание Na2CO3 (fэкв = 1), а по разности между объёмом раствора HCl, затраченным для титрования с метиловым оранжевым и удвоенным объёмом, затраченным для титрования с фенолфталеином - содержание NaHCO3:

m(Na2CO3) = C(HCl)×VФ×10-3×M(Na2CO3)

m(NaHCO3) = C(HCl)×(VМО – 2VФ)×10-3×M(NaHCO3)

Чем больше титранта требуется для титрования с фенолфталеином, тем больше карбоната содержится в анализируемой пробе. Если при добавлении к титруемому раствору фенолфталеина последний окрашивается в слабо розовый цвет и для его обесцвечивания требуется лишь несколько капель раствора титранта, то содержание карбоната в пробе очень мало.

Определение азота в органических соединениях по Кьельдалю и ионов аммония

Рис. 13.6. Прибор для определения азота в органических соединениях (по ГФ XI) 1 – парообразователь; 2 – колба Кьельдаля; 3 – воронка для ввода щелочи; 4 – брызгоуловитель; 5 – холодильник; 6 - приёмник

Определение азота в органических соединениях методом Кьельдаля проводят следующим образом (устройство прибора показано на рис. 13.6). Точную навеску анализируемого образца помещают в колбу Кьедьдаля и подвергают минерализации с помощью концентрированной серной кислоты, к которой добавлены K2SO4 и СuSO4, а в некоторых случаях ещё и селен или HgO. В процессе окисления органической части молекулы азот восстанавливается до иона аммония. После окончания минерализации к раствору добавляют NaOH. При этом образуется NH3, который отгоняют и поглощают раствором H3BO3 или стандартным раствором сильной кислоты (H2SO4 или HCl). В первом случае при взаимодействии борной кислоты с аммиаком образуется эквивалентное NH3 количество иона BO2-, который затем титруют стандартным раствором HCl (титрование заместителя). Во втором случае определяют избыток сильной кислоты, не вступивший в реакцию с NH3, титруя раствор стандартным раствором NaOH (обратное титрование).

Обычный метод Кьельдаля используют для органических соединений, содержащих аминный азот (амины, аминокислоты и т.д.). Для определения азота в нитратах, нитритах, нитросоединениях и т.п. необходимо ещё предварительное восстановление данных азотсодержащих групп до иона аммония или аминогруппы.

Методику, похожую на описанную выше, можно использовать также и для веществ, которые легко гидролизуются с образованием аммиака или аминов. Такие вещества не подвергают минерализации, а сразу проводят их щелочной гидролиз. Например, определение азота в соединении (1) требует обязательной минерализации, а для соединения (2) достаточно щелочного гидролиза.

Ион аммония является достаточно слабой кислотой (pKa = 9,24), поэтому его прямое титриметрическое определение при концентрации в водном растворе, например, 0,1 моль/л, невозможно.

Определение борной кислоты

Борная кислота является слабой одноосновной кислотой (pKa » 9,3). Её кислотные свойства обусловлены реакцией:

B(OH)3 + 2H2O › [B(OH)4]- + H3O+

Борная кислота является слишком слабой для того, чтобы её можно было с удовлетворительной погрешностью оттитровать щелочью в водном растворе. Однако, она может взаимодействовать с органическими веществами, в состав которых входит a-диольная группа (глицерин, глюкоза, фруктоза, маннит, сорбит и др.), с образованием более сильных комплексных кислот (например, у маннитборной кислоты pKa = 5,3). Последние могут быть оттитрованы раствором щёлочи в присутствии фенолфталеина.

Наиболее часто используемым на практике комплексообразователем при определении борной кислоты является глицерин, хотя по сравнению, например, с маннитом или моносахаридами данное вещество является менее активным комплексообразующим реагентом. Кроме того, глицерин очень вязкий и работать с ним неудобно. Глицерин, используемый в лаборатории, может содержать примеси кислот. Перед применением его необходимо нейтрализовать раствором щёлочи до появления слабо-розового окрашивания фенолфталеина.



<== предыдущая страница | следующая страница ==>
Расчёты для построения кривой титрования. 0,10 М Na2CO3 0,10 М раствором HCl f Компонент, определяющий рН Формула для расчёта рН (pKa1 = 6,35; pKa2 = 10,32) рН слабое | ГЛАВА 14

Дата добавления: 2014-10-10; просмотров: 1070; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.004 сек.