Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




РЕШЕНИЕ УРАВНЕНИЯ ШРЕДИНГЕРА

Читайте также:
  1. III. Борьба за разрешение восточного вопроса.
  2. Алгоритм расчета коэффициента теплоотдачипо критериальным уравнениям
  3. Б). Решение вопроса об исключении доказательств, в зависимости от характера допущенного нарушения.
  4. Базисное решение задачи ЛП.
  5. Влияние температуры на химическое равновесие. Уравнения изобары и изохоры химической реакции
  6. Геометрическое решение ЗЛП
  7. Дифференциальные уравнения
  8. Дифференциальные уравнения конвективного теплообмена
  9. Дифференциальные уравнения первого порядка
  10. Для произвольной плоской системы сил можно составить три уравнения равновесия.

УРАВНЕНИЕ ШРЕДИНГЕРА

 

Шрёдингер выбрал математическое описание стоячей волны в качестве модели для строения атома. Он включил в выражение для стоячей волны предположение де Бройля l=h/mJ и получил

Ñ2y + (4p2m2J2/h2)y == 0.

Комбинируя уравнения с уравнением , связывающее полную энергию Е, потенциальную энергию V и кинетическую энергию mJ2/2 .

Е = V + mJ2/2 или J2 = 2 (Е — V)/m,

можно получить уравнение Шрёдингера в его обычной форме

Ñ2y +(8p2m/h2)(E-V)=0

Следует помнить, что уравнение Шредингера не выводится из более общих законов, а является следствием, во-первых, эмпирического выбора уравнения для стоячей волны в качестве модели для описания поведения -электрона в атоме и, во-вторых, включения в последнее гипотезы де Бройля. Обоснованием такого «вывода» является тот факт, что решение уравнения приводит к значениям энергии Е, точно соответствующим найденным экспериментально из атомных спектров

Остановимся на смысле символа y в уравнении Шредингера. Поскольку y является трехмерным аналогом А (амплитуды плоской волны), y рассматривается как амплитудная функция. Самой функции y нельзя приписать физический смысл, но такой смысл имеет величина yy*, которая, как можно показать, пропорциональна вероятности нахожденияэлектрона в данном положении (y* — это функция, комплексносопряженная с y). Величина yy*dt передает вероятность нахождения электрона в элементе объема dt. Если y является действительной функцией, yy* переходит в y2.

 

 

Рассмотрим теперь качественно метод, используемый для решения уравнения Шредингера для случая атома водорода. Первым шагом является упрощение решения путем преобразования уравнения от декартовых координат (оси х, у и z) к сферическим полярным координатам.

При преобразовании системы координат уравнение Шредингера переходит в уравнение

()()(r2) + ()()(sinq) +

. +()() + )y = 0

Здесь m — приведенная масса ' m = ,

где М—масса ядра, m—масса электрона.

Уравнение можно разделить на более простые уравнения, каждое из которых включает только одну переменную r, q или j и может быть решено независимо. Эти уравнения имеют бесконечное множество решений; но, для того чтобы решения имели смысл для описания поведения электрона в атоме, они должны удовлетворять изложенным ниже требованиям «а» — «в». Каждое возможное решение представляет собой волновую функцию y, описывающую орбиталь — состояние атома. Для выделения пригодных решений из бесконечного общего числа их нужно отобрать те, точки, что удовлетворяют следующим условиям:

а) волновая функция должна быть конечной и непрерывной т. е. она не должна обращаться в бесконечность ни при каких значениях r, q и j .

б) решение должно быть однозначным, т. е. в любой данной точке амплитуда может иметь только одно значение, а не несколько;

в) решения должны быть нормированы; это условие требует, чтобы взятый по всему пространству интеграл от функции (являющейся решением), возведенной в квадрат и умноженной на dt, был равен единице, т. е.

=1

Поскольку y2dt связано с вероятностью нахождения электрона в элементе объема dt, интегрирование в уравнении просто требует, чтобы вероятность нахождения электрона где-либо в пространстве была равна единице.

Для неионизированного атома имеется лишь ограниченное число решений уравнения Шрёдингера, удовлетворяющих всем сформулированным выше требованиям. Такие дозволенные решения называются собственными функциями, и каждое из них описывает состояние — орбиталь, на которой в атоме могут находиться два электрона Орбитали отличаются нижними индексами при y; каждая орбиталь однозначно определяется набором квантовых чисел n ,l и m, где n соответствует основному номеру оболочки Уравнения для ynp разделяются на радиальную часть yr (зависящую от расстояния г) и угловую часть yqj (являющуюся функцией углов q и j). Полная волновая функция представляет собой просто произведение этих двух частей, т. е. y=yqjyr.Выражения для s-орбиталей не включают никакой зависимости от углов, и поэтому они обладают сферической симметрией. Число решений указывает, сколько существует орбиталей с данной энергией (т. е. в данной оболочке с одним главным квантовым числом). Для орбитали, отвечающей оболочке с n=1 (т.е. оболочке с самой низшей энергией), возможно только одно решение y1s. Для значений энергии, соответствующих n=2, имеются два очень близких энергетических уровня , соответствующих волновым функциям y2s и y2p. Есть только одно решение для y2s и три решения для y2p, соответствующие трем орбиталям y2p0,y2p+1,y2p-1. Эти три 2р-орбитали имеют все одинаковую энергию. Для описания равенства энергий трех орбиталей используется термин«триждывырожденные». Для энергий, отвечающих оболочке с п=3, имеется девять решений, соответствующих одной y3s-орбитали, трем вырожденным y3p-орбиталям и пяти вырожденным ysd-орбиталям. Решений, которые отвечали бы орбиталям y1p или y2d, нет, и таких орбиталей нет. Таким образом, выбрав в качестве модели стоячую волну, включив в волновое уравнение гипотезу де Бройля и отобрав физически приемлемые решения получившегося уравнения, можно сосчитать число возможных орбиталей в атоме водорода.

 


<== предыдущая страница | следующая страница ==>
МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ВОЛНОВОГО ДВИЖЕНИЯ | КВАНТОВЫЕ ЧИСЛА

Дата добавления: 2014-03-11; просмотров: 620; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.003 сек.