Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Далее будем вводить уравнение Гиббса-Гюгема

Читайте также:
  1. А которые крестьяне пошли в холопи до голодных лет, и тех, сыскивая по крестьянству, из холопей выдавати. А на беглых крестьян по старому приговору далее пяти лет суда не давати.
  2. Адиабатический процесс. Уравнение Пуассона
  3. Волновое уравнение
  4. Волновое уравнение
  5. Деньги, их свойства и функции. Уравнение обмена
  6. Дифференциальное уравнение теплопроводности (дифференциальное уравнение Фурье)
  7. Инфляция и устойчивость денежного обращения. Уравнение Фишера
  8. Лекция № 4 «Приближённое дифференциальное уравнение упругой линии балки. Способы определения перемещений».
  9. Общее уравнение водного баланса

Полный дифференциал от энергии:

Вычитая одно из другого, получаем следующее:

γdA – очевидно, что dA должно быть связано с величиной растяжения, потому что и то и другое отличает за линейные размеры.

Итого, подставляя уравнение Гиббса-Гюгема, получаем

Полученное уравнение называется уравнением адсорбции Гиббса, и является фундаментальным уравнением термодинамики.

Преобразуем данное уравнение таким образом, чтобы оно содержало только величины, связанные с поверхностью. Для этого мы должны прибегнуть к равенствам ранее, и расписать экстенсивные величины как сумму величин трёх областей.



-остаются только связанные с поверхностью величины.

В данном уравнении Гиббса присутствует, как может показаться, 5 независимых переменных: давление, температура, γ, μ, и тензор растяжения εij. На самом деле, поскольку у нас есть еще два уравнения Гиббса для объемных фаз, мы можем сократить количество переменных до трёх, сделав важное упрощение. Исходное уравнение позволяет связать dp, dT и dμ. Для удобства выразим через dT.


На объем можно сократить. Получаем:


Относительно dp и dμ это линейное уравнение. Получаем:



𝑑𝑝=𝑠1𝑑𝑇+𝜌1𝑠1−𝑠2𝜌2−𝜌1𝑑𝑇=𝑠2𝑝−𝑠1𝜌1+𝑠1𝜌1−𝑠2𝜌2𝜌2−𝜌1=𝑠1𝜌2−𝑠2𝜌2𝜌2−𝜌1𝑑𝑇

В итоге получаем следующее

Для анализа стоит заметить важную особенность: то, что стоит в фигурных скобках, не зависит от положения границы раздела, т.е. нигде нет зависимости от V1 и V2, поэтому можно выбирать границу раздела, которая нам удобна. Удобно выбрать бесконечно тонкую границу раздела, это значит, что объем Vs можно положить равным 0, и как следствие из этого, число частиц из этого предполагаем как нулевое. Несмотря на это, сам факт наличия границы между двумя фазами предполагает наличие избытков энергии, и все члены остаются. Исходя из этого, можно сократить уравнение Гиббса до следующего вида:

Из уравнения в такой форме можно сделать несколько важных выводов о состоянии поверхности:

1. В состоянии покоя (не происходит никакого растяжения), энтропия поверхности .

2. С другой стороны, при постоянной температуре мы должны рассматривать последнее слагаемое для каждой величины отдельно

Здесь нужно рассмотреть три случая: когда производная положительна, равна нулю, и отрицательна.

При положительной производной поверхностное напряжение будет становиться всё больше на то же относительное расширение поверхности. Это нормальная ситуация для твердого тела. В случае производной = 0 атомы могут свободно перестраиваться между собой. Есть поверхностный избыток, но он может свободно выйти на поверхность, не требуя энергии. Характерно для жидкостей и аморфных тел. В кристаллах это же явление связано с большим выделением энергии (большое изменение межатомных связей(??)).
В случае отрицательной производной, начиная с некоторого момента, растяжение образца сопровождается снижением энергии. Это возможно в случае наличия дефектов в кристалле – перемещение края дефекта приводит к его более выгодному положению. Соответственно, это же условие выполняется при разрушении кристалла, т.е. кристалл разрушается потому, что существование двух кристаллов с двумя поверхностями энергетически выгоднее в таких условиях, чем одного кристалла с большим количеством дефектов.


<== предыдущая страница | следующая страница ==>
Основы термодинамики поверхности | Анизотропия поверхностного натяжения

Дата добавления: 2014-11-14; просмотров: 205; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.003 сек.