Студопедия

Главная страница Случайная лекция


Мы поможем в написании ваших работ!

Порталы:

БиологияВойнаГеографияИнформатикаИскусствоИсторияКультураЛингвистикаМатематикаМедицинаОхрана трудаПолитикаПравоПсихологияРелигияТехникаФизикаФилософияЭкономика



Мы поможем в написании ваших работ!




Нормальные уравнения коррелат

Читайте также:
  1. Алгоритм расчета коэффициента теплоотдачипо критериальным уравнениям
  2. Влияние температуры на химическое равновесие. Уравнения изобары и изохоры химической реакции
  3. Дифференциальные уравнения
  4. Дифференциальные уравнения конвективного теплообмена
  5. Дифференциальные уравнения первого порядка
  6. Для произвольной плоской системы сил можно составить три уравнения равновесия.
  7. Интерпретация уравнения Бернулли
  8. ИОННО-МОЛЕКУЛЯРНЫЕ УРАВНЕНИЯ РЕАКЦИЙ ОБМЕНА
  9. Коррелатный способ уравнивания. Условные уравнения
  10. Критериальные уравнения массоотдачи

Систему (7) условных уравнений поправок решают под условием (5) CНК

- матрица весов результатов измерений.

Используют метод Лагранжа с неопределенными множителями, называемыми в геодезии коррелатами.

- вектор коррелат.

Решение приводит к образованию системы нормальных уравнений коррелат

(10)

- матрица коэффициентов нормальных уравнений. Коэффициенты, стоящие на главной диагонали, называются квадратичными. Они всегда положительны. Остальные коэффициенты неквадратичные.

πi = 1/pi - обратный вес результата измерения.

(11)

- нормальные уравнения коррелат.

Из решения нормальных уравнений находят коррелаты к1, к2, ..., кr, а затем поправки к результатам измерений по формуле:

(12)

После этого вычисляют уравненные значения результатов измерений

(13)

и делают контроль уравнивания подстановкой уравненных измерений в условные уравнения связи, невязок не должно быть:

(14)

Если измерения равноточные, вес измерения равен единице, pi = πi = 1, матрицы весов и обратных весов единичные Pnn = Пnn = E.


<== предыдущая страница | следующая страница ==>
Весовая функция | Составление нормальных уравнений коррелат

Дата добавления: 2014-09-08; просмотров: 427; Нарушение авторских прав




Мы поможем в написании ваших работ!
lektsiopedia.org - Лекциопедия - 2013 год. | Страница сгенерирована за: 0.002 сек.